TECHNICAL INFORMATION

microScan3, outdoorScan3, nanoScan3

Safety laser scanner

Data output via UDP and TCP/IP

Described product

microScan3, outdoorScan3, nanoScan3

Manufacturer

SICK AG Erwin-Sick-Str. 1 79183 Waldkirch Germany

Legal information

This work is protected by copyright. Any rights derived from the copyright shall be reserved for SICK AG. Reproduction of this document or parts of this document is only permissible within the limits of the legal determination of Copyright Law. Any modification, abridgment or translation of this document is prohibited without the express written permission of SICK AG.

The trademarks stated in this document are the property of their respective owner.

© SICK AG. All rights reserved.

Original document

This document is an original document of SICK AG.

Contents

1	Abo	out this document	4
	1.1	Purpose of this document	4
	1.2	Scope	4
	1.3	Target groups	4
	1.4	Symbols and document conventions	4
2	Safe	ety information	6
	2.1	General safety notes	6
3	Proc	duct description	7
	3.1	Structure and function	7
4	Data	a output	9
	4.1	Overview	9
	4.2	Activating and configuring data output	9
		4.2.1 Configuring with the Safety Designer	10
		4.2.2 Configure data output via CoLa2	11
	4.3	Contents of the data output	11
	4.4	Interpretation of the data transmitted via UDP	13
	4.5	Configured and actually used angular range	16
5	CoL	a2 interface of the safety laser scanner	18
6	Tech	hnical data	19
	6.1	Data sheet	19
7	Δnn		21
	7 1	Appendix A: Structure of data output	21
	7.1	Appendix R: Communication via Col a2	2/
	1.2		24
		7.2.1 Overview of the telegram format	34 24
		7.2.2 Overview of the telegram format	34
			30
		7.2.4 Using the sensors	38
	7.0	7.2.5 CoLa2 data types	40
	7.3	Appendix C: CoLa2 variables and methods of the safety laser scan- ner	41
		7.3.1 Variables	42
		7.3.2 Methods	60
	74	Appendix D: Examples of communication via CoLa2	63
	1		
	1.4	7.4.1 Example 1: Activating continuous data output via UDP	63
	1.4	7.4.1 Example 1: Activating continuous data output via UDP7.4.2 Example 2: Activating data output on request	63 64
8	List	 7.4.1 Example 1: Activating continuous data output via UDP 7.4.2 Example 2: Activating data output on request of figures. 	63 64 66

1 About this document

1.1 Purpose of this document

This document describes the extended usage possibilities of the microScan3 and outdoorScan3 safety laser scanner:

- Output of measurement data and other data via the Ethernet interface
- Access to variables and methods via CoLa2.

1.2 Scope

This document applies to all microScan3, outdoorScan3 and nanoScan3 safety laser scanners.

This document is included with the following SICK part numbers (this document in all available language versions):

8022706

1.3 Target groups

This document is written for system specialists working in the field of hardware and software development intending to integrate the measurement data or other data and functions of the safety laser scanner in their application.

1.4 Symbols and document conventions

The following symbols and conventions are used in this document:

Safety notes and other notes

Indicates a situation presenting imminent danger, which will lead to death or serious injuries if not prevented.

WARNING

Indicates a situation presenting possible danger, which may lead to death or serious injuries if not prevented.

CAUTION

Indicates a situation presenting possible danger, which may lead to moderate or minor injuries if not prevented.

NOTICE

Indicates a situation presenting possible danger, which may lead to property damage if not prevented.

Indicates useful tips and recommendations.

Instructions to action

The arrow denotes instructions to action.

4

- 1. The sequence of instructions for action is numbered.
- 2. Follow the order in which the numbered instructions are given.
- \checkmark The check mark denotes the result of an instruction.

2 Safety information

2.1 General safety notes

Danger of using data output for safety function

Data output may only be used for general monitoring and control tasks.

• Do not use data output for safety-related applications.

Danger of using CoLa2 for safety function

CoLa2 may only be used for general monitoring and control tasks.

▶ Do not use CoLa2 for safety-related applications.

3 Product description

3.1 Structure and function

The safety laser scanner is an electro-sensitive protective device (ESPE) which scans its surroundings two-dimensionally using infrared laser beams.

The safety laser scanner operates on the principle of time-of-flight measurement. It emits light pulses in regular, very short intervals. If the light strikes an object, it is reflected. The safety laser scanner receives the reflected light. The safety laser scanner calculates the distance to the object based on the time interval between the moment of transmission and moment of receipt (Δ t).

A rotating mirror is situated in the safety laser scanner. The mirror deflects the light pulses so that they scan a fan-shaped area.

① Angular resolution: the angular distance (in degrees) between 2 distance measurements

Geometry of the scan plane

The laser beams emitted cover a sector of a circle, so an object can be detected in an area of up to 275°.

The sector of a circle covered ranges from -47.5° to 227.5° , where 90° denotes the axis of the safety laser scanner from the back to the front. When viewing the safety laser scanner from above, the direction of rotation of the mirror and the deflected light pulses is counterclockwise, see figure 1, page 7.

Scan cycle time and angular resolution

The time that the mirror requires for one rotation is called the scan cycle time. The number of light pulses per unit of time is constant. The scan cycle time and the number of light pulses per unit of time determine the angular resolution.

Slightly different scan cycle times can be used to minimize mutual interference in neighboring safety laser scanners.

Measurement Data

Measurement data is, for example, the distance data for each individual light pulse. The measurement data can be output via the Ethernet interface. In addition to the measurement data, other data can also be output, e.g. on object detections and the device status.

4 Data output

4.1 Overview

Danger of using data output for safety function

Data output may only be used for general monitoring and control tasks.

Do not use data output for safety-related applications.

Data output allows for the output of measurement data and other data via the Ethernet interface. Other network participants, the receivers, can call up and use the data.

The data output works in different send modes:

- On request: Data is output when there is an explicit request from a host computer via TCP/IP using CoLa2
- Continuous and on request: Data is output continuously via UDP to a defined target address and also when there is an explicit request from a host computer via TCP/IP using CoLa2.¹⁾

The device provides the data via channels. Each channel consists of a configured data output and the receiver defined for it. The number of available data output channels depends on the device variant, see "Data sheet", page 19.

You define the angle range that is output for the measurement data in the configuration of the measurement data output. The device always measures in the entire scanning angle, but you can limit the output of the measurement data to a smaller sector.

You can define which data the device should output in each channel in the configuration of the measurement data output. The actually available data depends on the operational status of the device, among other things. Therefore not all configured data is output, rather only the data which is currently available.

After each rotation of the mirror, the device creates an instance of the measurement data. For continuous data output, you can also additionally define whether each instance should be sent or only every nth instance.

4.2 Activating and configuring data output

You can activate and configure the data output in two ways:

- With the Safety Designer
- Via the CoLa2 protocol

¹⁾ For devices with a max. protective field range of 9.0 m, the transmitted data quantity can be very large (> 230 kByte/s) if all measured values are transmitted. For stable data output, you can adapt the transmission frequency (e.g. every second measurement) or decrease the angular range.

4.2.1 Configuring with the Safety Designer

Overview System Extras Help n53 Pro I/O (M12 w ETH) Machine operator Discon cted 🗕 🗖 🗱 Connect 👪 Disconnect 👪 Upload 🜄 Transfer 💒 Identify the device SD Show Main Window Data output 💭 🔛 🙆 (i) Spe and which data should be sent via Ethernet (1)Channel 1 Channel 2 Send Mode 2 O Deactivated (2)On request On request and also continuously to a target computer (router settings made via "Network settings") 192 168 1 55 IP address UDP nort 6060 192 168 Router Every Measuring \sim Send Selection data conten (4) (3) 2 27.00 🗘 ° (results 25.8°) 💡 Block "Device Status" * At the angle of 125.00 🗘 ° (results 125.7°) to Block "Configuration of Data Output" Block "Measurement Data" * Block "Field Interruption" * Block "Application Data" or rotation directior 180

💽 🏴 Tasks (0) 🔛 Notes (0)

Figure 2: Data output

- ① Data output channel
- 2 Send mode
- ③ Data content
- ④ Angular range

Using Safety Designer, you can configure the safety laser scanner and the data output. A configuration that is created with the Safety Designer is saved in the device and is also active after restarting the device.

Data output channel

Every available data output channel has independent settings.

Send mode

- Deactivated: Data output is deactivated
- On request: Data is output when there is an explicit request from a host computer via TCP/IP using CoLa2
- Continuous and on request: Data is output continuously via UDP to a defined target address and also when there is an explicit request from a host computer via TCP/IP using CoLa2.²⁾
- 2) For devices with a max. protective field range of 9.0 m, the transmitted data quantity can be very large (> 230 kByte/s) if all measured values are transmitted. For stable data output, you can adapt the transmission frequency (e.g. every second measurement) or decrease the angular range.

Data content

- Device status: Information on the status of the safety laser scanner (e.g., cut-off paths, errors)
- **Configuration of data output:** Information on the angular range actually being used (for technical reasons, data from a slightly larger angular range than the one set may be output in some cases)
- Measurement data: Distance data with reflector detection and RSSI
- Field interruption: Data on the light beams in interrupted fields of the active monitoring case
- Application data: Status of inputs and outputs that are used in the monitoring case
 table

Angular range

You can define the range within which measurement data and data relating to field interruptions is output.

4.2.2 Configure data output via CoLa2

CoLa2 is a protocol from SICK, with which a client (control, PC etc.) can access suitable SICK sensors via TCP/IP.

With the CoLa2 method NavData_ChangeCommSettings, you can activate and configure the data output.

The configuration via the NavData_ChangeCommSettings method is not persistent and is lost when the device is switched off, restarted or reconfigured. In these cases, the configuration created with the Safety Designer is active.

CoLa2 variables for data output:

- "Saved configuration of the data output channel", page 55
- "Active configuration of the data output channel", page 57
- "Most recent measurement data", page 59

CoLa2 methods for data output:

"Configuring the data output", page 61

Further topics

- "CoLa2 interface of the safety laser scanner", page 18
- "Appendix B: Communication via CoLa2", page 34
- "Appendix D: Examples of communication via CoLa2", page 63

4.3 Contents of the data output

Overview

The structure of the output data begins with a header. Optional blocks follow the header. You can configure the scope of the output data by defining which blocks are output.

The following data blocks are available:

- Device status
- Configuration of the data output
- Measurement data
- Field interruption

- Application data
- Local inputs and outputs

Header

Data output always contains a header with the following data:

- Serial numbers: Serial number of the device without system plug, serial number of the system plug
- Number of the data output channel to which the output data belong
- The sequence number applies for the current data output channel. It is increased by 1 with each data set sent.
- Scan number. The number of the scan to which the data set belongs. When changing the device status, it may be that scan numbers are left out (e.g. when waking up from standby mode). In standby mode (when the mirror is no longer rotating) the scan number is not incremented.
- A time stamp for the time at which the data set was created. The measurements are carried out regularly according to the scan cycle time set. There can be a jitter in the time stamp since it is not synchronized with the beginning of the scan.
- Offsets that display further, optional data blocks that are only contained if they are configured and available. If a data block is not contained (not configured or currently no data available) then size = 0 and offset = 0.

Device status

Information on the device status is output in this data block e.g. error status, status of the cut-off path, monitoring case number.

Configuration of the data output

In this data block e.g. the number of output beams, the configured scan cycle time and the angular range actually used. The actually used angular range can deviate slightly from the configured angular range, see "Configured and actually used angular range", page 16.

Measurement data

In this data block, distance, RSSI and status are output for each beam. The number of beams depends on the angular beam configured and on the scan cycle time.

Field interruption

This data block contains information on field interruptions in each configured cut-off path. If an object is detected and the cut-off path therefore switches to the OFF state, the beams that are interrupted by the object are marked.

The data in this block is organized in an array. Each element of the array stands for a cut-off path. The position of the cut-off path in the array is the same as its position in the network process image (assembly) and is configured in the Safety Designer.

① Position of the cut-off paths in the process image

Only data for the beams that are within the configured angular range for the measurement data output is output.

Application data

The status of the inputs and outputs must also be used in the configuration of the laser safety scanner. The available inputs and outputs depend on the safety laser scanner variant.

Local inputs and outputs

Status of the local inputs and outputs (local static inputs, universal inputs, universal I/Os, universal outputs, OSSDs). The available inputs and outputs depend on the safety laser scanner variant.

Further topics

"Appendix A: Structure of data output", page 21

4.4 Interpretation of the data transmitted via UDP

This chapter describes the interpretation of the UDP datagram if continuous data output has been configured. The data receiver is clearly identified through their IPv4 address and the port number.

NOTE

i

Several devices (or several channels of a device) cannot send your data to the same port of the same target system. If a system should receive data from several devices or channels, then you must use a clear port for each device and each channel.

Depending on the configuration (scope of the data), an instance of the data output is too big for a UDP datagram. The instance is then split up into fragments and sent in several sequential UDP datagrams.

Figure 4: UDP datagram and measurement data

The following figure shows a datagram that a device (IP address: 192.168.0.170) sends to a receiver (IP address: 192.168.0.50). In this example, every instance of the data output is divided into 3 fragments.

No.	Time	Source	Destination	Protocol	Length Info	^
	2373 20.094525	192.168.0.170	192.168.0.50	UDP	1502 50000 → 50000 Len=1460	
	2374 20.099806	192.168.0.170	192.168.0.50	UDP	1502 50000 → 50000 Len=1460 } (1)	
	2375 20.103682	192.168.0.170	192.168.0.50	UDP	450 50000 → 50000 Len=408 J	
	2379 20.119780	192.168.0.170	192.168.0.50	UDP	1502 50000 → 50000 Len=1460	
	2380 20.124522	192.168.0.170	192.168.0.50	UDP	1502 50000 → 50000 Len=1460 (2)	
	2381 20.129285	192.168.0.170	192.168.0.50	UDP	450 50000 → 50000 Len=408 J	
	2382 20.149783	192.168.0.170	192.168.0.50	UDP	1502 50000 → 50000 Len=1460	
	2383 20.154561	192.168.0.170	192.168.0.50	UDP	1502 50000 + 50000 Len=1460	
	2384 20.159293	192.168.0.170	192.168.0.50	UDP	450 50000 → 50000 Len=408	
	2389 20.179725	192.168.0.170	192.168.0.50	UDP	1502 50000 → 50000 Len=1460	
	2390 20.184540	192.168.0.170	192.168.0.50	UDP	1502 50000 + 50000 Len=1460	
	2391 20.189156	192.168.0.170	192.168.0.50	UDP	450 50000 → 50000 Len=408	
	2393 20.209740	192.168.0.170	192.168.0.50	UDP	1502 50000 → 50000 Len=1460	
	2394 20.214550	192.168.0.170	192.168.0.50	UDP	1502 50000 + 50000 Len=1460	
	2395 20.219117	192.168.0.170	192.168.0.50	UDP	450 50000 → 50000 Len=408	
	2396 20.234539	192.168.0.170	192.168.0.50	UDP	1502 50000 → 50000 Len=1460	
	2397 20.239808	192.168.0.170	192.168.0.50	UDP	1502 50000 → 50000 Len=1460	
	2398 20.243742	192.168.0.170	192.168.0.50	UDP	450 50000 → 50000 Len=408	
	2399 20.264500	192.168.0.170	192.168.0.50	UDP	1502 50000 → 50000 Len=1460	
	2401 20.269806	192.168.0.170	192.168.0.50	UDP	1502 50000 → 50000 Len=1460	
	2402 20.273784	192.168.0.170	192.168.0.50	UDP	450 50000 → 50000 Len=408	
	2403 20.294596	192.168.0.170	192.168.0.50	UDP	1502 50000 → 50000 Len=1460	~
<pre>> Frame 2379: > Ethernet II, > Internet Pro > User Datagra > Data (1460 B)</pre>	1502 bytes on wire (, Src: Sick_ff:08:ae otocol Version 4, Src am Protocol, Src Port bytes)	(12016 bits), 1502 byt (00:06:77:ff:08:ae), c: 192.168.0.170, Dst: t: 50000, Dst Port: 50	es captured (12016 bi Dst: 00:e1:11:00:30:2 192.168.0.50 000	ts) on in 0 (00:e1:	terrace 0 11:00:30:20)	
Data: 4d5	5333204d440100b80c000	004b010000000000000000	0000			
[Length:	1460]					
						_
0000 00 e1 11	L 00 30 20 00 06 77	ff 08 ae 08 00 45 00	Ð WE.			~
0010 05 d0 69	9 37 00 00 40 11 89	b9 c0 a8 00 aa c0 a8	i7@			
0020 00 32 c3	3 50 c3 50 05 bc e5	cb 4d 53 33 20 4d 44	.2.P.PMS3 MD			
0030 01 00 02	S 0C 00 00 40 01 00	00 00 00 00 00 00 00 00	P m			
0050 00 00 4	01 00 00 b4 5b 00	00 00 00 00 00 00 24 99				
0060 0a 00 40	00 10 00 60 00 18	00 7c 00 68 08 e8 08	L			
0070 80 02 60	0b 08 01 78 0c 40	00 00 00 00 00 00 00	lx. @			
0080 08 08 08	00 00 00 00 00 00 00	00 01 00 00 00 01 55	U			
0090 00 00 ft	F 00 00 00 00 00 03	00 00 00 00 00 01 00				
00a0 00 00 01	1 00 19 02 1e 00 00	00 00 00 20 f4 f8 d5				
00a0 00 00 01 00b0 20 00 21 00c0 00 00 21	L 00 19 02 1e 00 00 0 00 00 00 b4 3d 49 L 06 19 01 27 06 1a	00 00 00 20 f4 f8 d5 00 01 00 00 00 19 02 01 1c 05 19 01 0f 05	.+= I			
00a0 00 00 01 00b0 20 00 21 00c0 00 00 21 00d0 19 01 05	L 00 19 02 1e 00 00 0 00 00 00 b4 3d 49 L 06 19 01 27 06 1a 5 06 19 01 fc 05 19	00 00 00 20 f4 f8 d5 00 01 00 00 00 19 02 01 1c 06 19 01 0f 06 01 f3 05 19 01 e9 05	.+;= I			
00a0 00 00 01 00b0 20 00 21 00c0 00 00 21 00d0 19 01 05 00e0 19 01 e5	L 00 19 02 1e 00 00 0 00 00 00 b4 3d 49 L 06 19 01 27 06 1a 5 06 19 01 fc 05 19 5 05 1a 01 de 05 1a	00 00 00 20 f4 f6 d5 00 01 00 00 00 19 02 01 1c 06 19 01 0f 06 01 f3 05 19 01 e9 05 01 d7 05 1a 01 cd 05	.+= I			
00.00 00 00 00 00 00.00 20 00 20 20 20 00.00 00 00 00 21 00 00 21 00.00 19 01 05 00 01 05 00 01 05 00.00 19 01 05 00 19 01 05	L 00 19 02 1e 00 00 0 00 00 00 b4 3d 49 L 06 19 01 27 06 1a 5 06 19 01 fc 05 19 5 05 1a 01 de 05 1a 8 05 19 01 bc 05 19	00 00 00 20 f4 f8 d5 00 01 00 00 00 19 02 01 10 06 00 19 02 01 10 05 19 01 67 06 01 f3 05 19 01 e9 05 01 17 05 01 12 05 01 b3 05 19 01 a2 05	.+= I			

Figure 5: Example datagrams

- ① Data output, instance 1
- 2 Data output, instance 2

The data integrity of each individual UDP datagram is ensured with the UDP checksum. The UDP neither ensures the arrival of individual datagrams, nor the sequence, nor protection from duplicates. Therefore each UDP datagram is complemented with an additional 24-byte header for data output see table 1, page 15. Using the information in this header, the receiver can recognize duplicates and the loss of datagrams, redo the sequence and re-combine the (possibly fragmented) instances of the data output. As UDP does not offer the opportunity to re-request lost datagrams, receivers must be able to deal with data loss.

Table 1: Data output datagram headers

Byte 0 1)	Byte 1	Byte 2	Byte 3					
Datagram marker								
Protocol	Protocol Version (maj) Version (min)							
Total length								
Identification								
Fragment offset								
Reserved								

1) The bit sequence is from left to right and from top to bottom.

- Datagram marker (ASCII): "MS3<space>"
- Protocol (ASCII): "MD"
- Version Maj.Min (USInt/USInt): "1.0"
- **Total length** (UDInt, Little Endian): Total length of the (possibly fragmented) instance of the data output (without header)
- Identification (UDInt, Little Endian): Datagrams (fragments), which belong to the same instance of the data output, have the same value. The value is increased for every instance of data output in one channel.
- **Fragment offset** (UDInt, Little Endian): Offset (in bytes) of the measurement data in datagram (fragment) compared to the start of the instance of the data output.

Due to the additional header, the actual fragment of the data output begins at offset 24 in the data field of the UDP datagram. In the following example of a complete UDP datagram, the L2 Ethernet frame, the IPv4 and the UDP headers are marked in red. The additional, 24 byte-long header is marked in blue. The following data marked in green is the actual measurement data or a fragment of it.

Table 2: Example: UDP datagram

0000	00	e1	11	00	30	20	00	06	77	ff	08	ae	08	00	45	00	0wE.
0010	05	d0	69	37	00	00	40	11	89	b9	с0	a8	00	aa	c0	a8	i7@
0020	00	32	c3	50	c3	50	05	bc	e5	cb	4d	53	33	20	4d	44	.2.P.PMS3 MD
0030	01	00	b8	0c	00	00	4b	01	00	00	00	00	00	00	00	00	K
0040	00	00	52	02	00	00	6d	b5	0a	01	8c	8f	0a	01	00	00	Rm
0050	00	00	4b	01	00	00	b4	5b	00	00	00	00	00	00	24	99	K§.
0060	0a	00	4c	00	10	00	60	00	18	00	7c	00	68	8 0	e8	08	\ldots L \ldots ` \ldots .h \ldots
0070	80	02	6c	0b	80	01	78	0c	40	00	00	00	00	00	00	00	lx.@
0080	00	00	00	00	00	00	00	00	00	00	01	00	00	00	01	55	U

4.5 Configured and actually used angular range

When configuring the data output, you enter a start angle and an end angle. The actually used angles can deviate slightly from the configured angles.

The actually used angular range always contains the entire configured angular range.

Figure 6: Laser beams

Every laser beam of the safety laser scanner is emitted in a defined angle. Measurement data is only available for the angles in which a laser beam is emitted.

Field interruptions are not evaluated for each individual laser beam, rather for every 8th beam.

Therefore the start angle and the end angle are rounded down (start angle) or rounded up (end angle) to the next laser beam that has a number that is a multiple of 8.

Figure 7: Rounding to the 8th laser beam

5 CoLa2 interface of the safety laser scanner

Overview

CoLa2 (Command Language 2) is a protocol from SICK, with which a client (control, PC etc.) can access suitable SICK sensors via a network (TCP/IP).

The CoLa2 interface of the device allows you to request information from the device (to read sensor variables) or to carry out routines on the device (to call up sensor methods).

ation	 Session management Request ID Command handler Serialization / Deserialization 	CoLa Command Layer (7.2)
a Specific	 Segmentation of telegrams Routing information 	CoLa Message Layer (7.1)
CoLa	TCP/IP (+UDP)	CoLa Transport Layer (OSI 1-6)

Figure 8: Cola2 protocol stack

Important information

DANGER

Danger of using CoLa2 for safety function

CoLa2 may only be used for general monitoring and control tasks.

Do not use CoLa2 for safety-related applications.

Device-specific deviations

- Byte sequence: The safety laser scanner uses the Little Endian format for the data according to the bytes Cmd and Mode (see "Layer 7.2, command layer", page 35)
- The TCP/IP for the CoLa2 communication of the safety laser scanner is port 2122
- A CoLa2 telegram can be split into fragments. The client must re-combine the fragments
- Variables and methods of the safety laser scanner can only be called up via index (and not via their names)
- The safety laser scanner does not support any events

Further topics

- "Appendix B: Communication via CoLa2", page 34
- "Appendix C: CoLa2 variables and methods of the safety laser scanner", page 41

6 Technical data

6.1 Data sheet

 Table 3: microScan3, outdoorScan3 data sheet
 Image: Comparison of Co

	Devices with a max. protective field range of 4.0 m Devices with a max. protective field range of 5.5 m	Devices with a max. protective field range of 9.0 m
Data output channels	1	
Scanning angle	275° (-47.5° to 227.5°)	
Distance measurement range ¹)	
At 10% remission	≤ 12 m	≤ 22 m
At 100% remission	≤ 40 m	≤ 64 m
Scanning frequency		
Scan cycle time 30 ms	33 Hz	-
Scan cycle time 40 ms	25 Hz	25 Hz
50 ms scan cycle time	-	20 Hz
Angular resolution (physical) ²⁾		
Scan cycle time 30 ms	< 0.01°	-
Scan cycle time 40 ms	< 0.01°	< 0.01°
50 ms scan cycle time	-	< 0.01°
Angular resolution (safeHDDM@	3) ²⁾	
Scan cycle time 30 ms	0.51° (537 safeHDDM® mea- sured value)	-
Scan cycle time 40 ms	0.39° (715 safeHDDM® mea- sured value)	0.125° (2,201 safeHDDM® measured values)
50 ms scan cycle time	-	0.1° (2,751 safeHDDM® measured values)
Light spot size (W x H)		
At 5.0 m distance	2.4 mm × 14 mm	4.8 mm × 16 mm
At 10.0 m distance	13 mm × 27 mm	1.6 mm × 30 mm
At 20.0 m distance	45 mm × 55 mm	10 mm × 60 mm
At 30.0 m distance	66 mm × 78 mm	20 mm × 91 mm
At 40.0 m distance	102 mm × 110 mm	30 mm × 121 mm
At 50.0 m distance	-	38 mm × 151 mm
At 60.0 m distance	-	47 mm × 181 mm
Measurement uncertainty ³⁾		
Systematic errors	± 10 mm	
Total measurement error (statis	stical and systematic)	
At 1 σ	± 13 mm	± 18 mm
At 2 σ	± 16 mm	± 26 mm
At 3 σ	± 19 mm	± 34 mm
At 4 σ	± 22 mm	± 42 mm
At 5 σ	± 25 mm	± 50 mm

¹⁾ Warm-up time \geq 30 min. Light spot fully on the target object.

²⁾ safeHDDM® filters the physical measured values and provides very precise and reproducible measured values. Only safeHDDM® measured values are available via data output. ³⁾ Typical values at 20 °C and 1.8% remission, distance = protective field range.

Table 4: nanoScan3 data sheet

	nanoScan3
Data output channels	2
Scanning angle	275° (-47.5° to 227.5°)
Distance measurement range ¹	
At 10% radiance factor	≤ 8.7 m
At 100% radiance factor	≤ 27.4 m
Scanning frequency	33 Hz
Angular resolution (physical) ²⁾	< 0.01°
Angular resolution (safe-HDDM®) $^{2)}$	0.17° (1,651 safeHDDM® measured values)
Light spot size (W x H)	
At 5.0 m distance	6 mm × 25 mm
At 10.0 m distance	20 mm × 50 mm
At 20.0 m distance	40 mm × 100 mm
At 30.0 m distance	60 mm × 150 mm
At 40.0 m distance	80 mm × 200 mm
Measurement uncertainty ³⁾	
Systematic error	± 10 mm
Total measurement error (statis	tical and systematic)
At 1 σ	± 13 mm
At 2 σ	± 16 mm
At 3 σ	± 19 mm
At 4 o	± 22 mm
At 5 σ	± 25 mm

¹⁾ Warm-up time \geq 30 min. Light spot fully on the target object.

2) safeHDDM® filters the physical measured values and provides very precise and reproducible measured values. Only safeHDDM® measured values are available via data output.

³⁾ Typical values at 20 °C and 1.8% radiance factor, distance = protective field range.

7 Annex

7.1 Appendix A: Structure of data output

The data is coded in Little Endian format within the structure of the data output. Data types: see "CoLa2 data types", page 40.

There are non-specified ranges between the data blocks. These ranges are noted in the following table with " $\sim \sim \sim$ " and must be ignored by the client.

The blocks must be addressed via the offset that is given in the header. The blocks may not be addressed via a fixed offset because the size of a block and therefore the offset to the duration can change.

In future versions of the protocol, it is possible that more data can be attached to the header or to the blocks. Access to the data remains compatible when done as described here.

Table 5: Data output: Header

Structure		Data type	Length in bytes	Offset in bytes	Description		
Version	Version	USINT	1	0	0: The rest of this structural element is invalid. Other values: valid.		
	Major version	USINT	1	1	Main version number. Different numbers stand for incompatible versions.		
	Minor version	USINT	1	2	Sub version number. Versions with different sub version numbers are compatible if the main versions numbers are the same.		
	Release	USINT	1	3	Release number.		
Device serial number		UDINT	4	4			
Serial number of the system plug		UDINT	4	8			
Channel number		USINT	1	12	Number of the data output channel.		
Reserved			3	13			
Sequence number		UDINT	4	16	The sequence number applies for the current data output channel. It is increased by 1 with each data set sent.		
Scan number		UDINT	4	20	The number of the scan to which the data set belongs.		
Time stamp	Date	UINT	2	24	Time at which the data set was created.		
	Reserved		2	26	The measurements are carried out regularly according to the scan		
	Time	UDINT	4	28	not synchronized with the beginning of the scan.		
					Date: • If time synchronization is active: days since January 1, 1972		
					 If time synchronization is not active: number of full 24-hour cycles since the device was switched on 		
					 Time: If time synchronization is active: milliseconds since midnight If time synchronization is not active: milliseconds since the start of the current 24-hour cycle since switching on the device 		

Structure		Data type	Length in bytes	Offset in bytes	Description
Block Device status	Offset	UINT	2	32	If the data block concerned is contained, then "Offset" displays the
	Size	UINT	2	34	beginning of the block in the structure (based on byte 0 of the structure) "Size" is the size of the corresponding data block. If a
Block Configuration of the	Offset	UINT	2	36	data block is not contained (not configured or currently no data
data output	Size	UINT	2	38	available) then size = 0 and offset = 0.
Block Measurement data	Offset	UINT	2	40	header. The blocks may not be addressed via the onset that is given in the
	Size	UINT	2	42	because the size of a block and therefore the offset to the duratio
Block Field interruption	Offset	UINT	2	44	
	Size	UINT	2	46	
Block Application data	Offset	UINT	2	48	
	Size	UINT	2	50	
Block Local inputs and out-	Offset	UINT	2	52	
puts	Size	UINT	2	54	
			~	~ ~	

Table 6: Data output: Block Device status

Structure		type Length in	in bytes Offset in b	ytes D	Description						
~ ~ ~											
Device status	see ta page 2	able 7, 16 24	Offset Device	(Block status)	 Status of security function Status sleep mode Contamination warning Contamination error Reference contour monitoring Manipulation Cut-off path (safety-oriented) Cut-off path (Not safety-related) Current monitoring case Reset required Application error Device error 						
			~ ~ ~								

Table 7: Content of the block Device status

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	Reserved		Manipulation	Reference contour monitoring	Contamination error	Contamination warn- ing	Status sleep mode	Status of security function
1 ¹⁾	Cut-off path 08 (safety-oriented)	Cut-off path 07 (safety-oriented)	Cut-off path 06 (safety-oriented)	Cut-off path 05 (safety-oriented)	Cut-off path 04 (safety-oriented)	Cut-off path 03 (safety-oriented)	Cut-off path 02 (safety-oriented)	Cut-off path 01 (safety-oriented)
2	Reserved							
3	Reserved							
4 ¹⁾	Cut-off path 08 (Not safety-related)	Cut-off path 07 (Not safety-related)	Cut-off path 06 (Not safety-related)	Cut-off path 05 (Not safety-related)	Cut-off path 04 (Not safety-related)	Cut-off path 03 (Not safety-related)	Cut-off path 02 (Not safety-related)	Cut-off path 01 (Not safety-related)
5	Reserved	1	1	1				
6	Reserved							
7 1)	Reset required, Cut- off path 08	Reset required, Cut- off path 07	Reset required, Cut- off path 06	Reset required, Cut- off path 05	Reset required, Cut- off path 04	Reset required, Cut- off path 03	Reset required, Cut- off path 02	Reset required, Cut- off path 01
8	Reserved							
9	Reserved							
10	Current monitoring ca	se (Monitoring case tab	le 1)					
11 ²⁾	Current monitoring ca	se (Monitoring case tab	le 2)					
12	Reserved							
13	Reserved							
14	Reserved							
15	Reserved						Device error	Application error

The number of available cut-off paths depends on the device variant.
 The number of available monitoring case tables depends on the device variant.

Table 8: Data output: Block Configuration of the data output

Structure		Data type	Length in bytes	Offset in bytes	Description
			~	~ ~	
Configuration of the data out- put with the actually used angular range	Factor	UINT	2	Offset (Block Configuration of the data output) +0	With this factor, the distance data must be multiplied to receive the distance in mm. The factor is currently 1 and therefore does not need to be consid- ered.
	Number of beams	UINT	2	Offset (Block Configuration of the data output) +2	The number of beams to which distance data is output depend on the configured start angle, stop angle and on the scan cycle time.
	Scan cycle time	UINT	2	Offset (Block Configuration of the data output) +4	Unit: ms
	Reserved		2	Offset (Block Configuration of the data output) +6	
	Start angle	DINT	4	Offset (Block Configuration of the data output) +8	This value, divided by 4194304, equals the actual start angle.
	Angular resolution	DINT	4	Offset (Block Configuration of the data output) +12	This value, divided by 4194304, equals the angular resolution.
	Beam interval	UDINT	4	Offset (Block Configuration of the data output) +16	Approximate time between two beams. Unit: μs
	Reserved		4	Offset (Block Configuration of the data output) +20	

Table 9: Data output: Block Measurement data

Structure		Data type	Data type Length in bytes Offset in bytes		Description
		·	~	~ ~	
Number of beams		UDINT	4	Offset (Block Measurement data) +0	
Measurement data 1)	Distance	UINT	2	Offset (Block Measurement data) + 4 + (4 × beam number)	Unit: mm
	RSSI	USINT	1	Offset (Block Measurement data) +4+(4×beam number)+2	 RSSI An RSSI value is output for each beam. This value depends on the strength of the received signal/ beam. This value correlates (not linearly) with the physical signal level. At a higher signal level, the value changes are smaller. The RSSI is high for light (white) objects and for objects with shiny surfaces that directly reflect the beam back at the safety laser scanner. The RSSI is very high for retroreflectors. For dark objects and objects with shiny surfaces that the beam hits at a flat angle, the RSSI is low. Example: At a flat angle, the surface of a display or monitor delivers very low RSSI values or is not recognized at all. Objects at a larger distance delivers lower RSSI values than objects at a smaller distance. (The RSSI values can behave dif- ferently for retroreflectors.)
	Status	SCONT	1	Offset (Block Measurement data) + 4 + (4 × beam number) + 3	Bits 0: Valid Bit 1: No reflected light pulse received ²⁾⁾ Bit 2: Dazzle Bit 3: Reflector Bit 4: Contamination error Bit 5: Contamination warning

¹⁾ A data field per beam. The data field is repeated n times. (n = number of beams).

²⁾ If the bit has the value 1, the value in the distance field should not be used.

2)) The reflector flag indicates that the beam has hit a retroreflector. This information can be used for navigation, for example, using permanently installed retroreflectors. In individual cases, the cause of the reflector flag can also be an edge in the spatial contour that is double-reflected by a beam.

Table 10: Data output: Block Field interruption

Structure		Data type	Length in bytes	Description
			~ ~ ~	
Field interruption ¹⁾	Length	UDINT	4	Number of bytes in the data field Flags.
	Flags	SCONT	[Length]	One bit for each beam in the configured angular range. O: Beam not interrupted ²⁾ 1: Beam interrupted ²⁾
			~ ~ ~	

¹⁾ One data field per cut-off path. The data field is repeated 24 times.

²⁾ Only the bits are 1 whose beams are interrupted by an object and the switch the cut-off path into the OFF state.

Table 11: Data output: Block Application data (inputs)

Structure		Data type Length in bytes Offset in bytes		Offset in bytes	Description
			~	~ ~	
Static control inputs	Control input	DCONT	4	Offset (Block Application data) +0	UDInt value. Each bit represents the logical status of a static con- trol inputs. For complementary evaluation, the static control inputs are evalu- ated in pairs.
	Flags	DCONT	4	Offset (Block Application data) +4	Each bit stands for a static control input. If the bit has the value 1, the static control input is available for monitoring case switchover.
Reserved			4	Offset (Block Application data) +8	
Monitoring case numbers	Monitoring case number (monitoring case table n)	ARRAY of 20 × UINT	40	Offset (Block Application data) +12	Only if the monitoring case numbers are used for the monitoring case switchover (e.g. assembly 103): each element of the array stands for the monitoring case number of a monitoring case table.
	Flags	DCONT	4	Offset (Block Application data) +52	The monitoring case number of the corresponding monitoring case table is available for the monitoring case switchover.

Structure		Data type	Length in bytes	Offset in bytes	Description
Dynamic control inputs	Speed 1	INT	2	Offset (Block Application data) +56	Speed at input 1 in mm/s (-32,000 mm/s +32,000 mm/s)
	Speed 2	INT	2	Offset (Block Application data) +58	Speed at input 2 in mm/s (-32,000 mm/s +32,000 mm/s)
	Flags	SCONT	1	Offset (Block Application data) +60	Bits 0: Speed 1 valid Bit 1: Speed 2 valid Bits 2 7: Reserved
	Reserved		1	Offset (Block Application data)	
Reserved			2	Offset (Block Application data)	
Reserved			10	+62 Offset (Block Application data)	
Standby state input		ENUM8	1	+64 Offset (Block Application data) +74	1 = Standby state input is HIGH. 2 = Standby state input is LOW.
Reserved			1	Offset (Block Application data) +75	
Reserved			64	Offset (Block Application data) +76	

Table 12: Data output: Block Application data (outputs)

Structure		Data type	Length in bytes	Offset in bytes	Description
Cut-off paths	Cut-off path	DCONT	4	Offset (Block Application data) +140	Bits 0 – 19: Logic status of the non-secure cut-off path Bits 20 31: Reserved The bit position of a cut-off path corresponds to its number in the assembly or process image that was defined in Safety Designer.
	Safe	DCONT	4	Offset (Block Application data) +144	The respective cut-off path is safe.
	Valid	DCONT	4	Offset (Block Application data) + 148	The bit of the corresponding cut-off path is valid.
Monitoring case number	Monitoring case number (monitoring case table n)	ARRAY of 20 × UINT	40	Offset (Block Application data) +152	Each element of the array represents for the number of the active monitoring case of a monitoring case table.
	Flags	DCONT	4	Offset (Block Application data) + 192	The monitoring case number of the corresponding monitoring case table is valid.
Status standby state		ENUM8	1	Offset (Block Application data) + 196	1: Device in standby 2: Device not in standby

Structure		Data type	Length in bytes	Offset in bytes	Description
Messages	Host	SCONT	1	Offset (Block Application data) +197	Bit 0: Contamination warning Bit 1: Contamination error Bit 2: Manipulation Bit 3: Dazzle Bit 4: Reference contour monitoring Bit 5: Critical error Bit 6, 7: Reserved
	Reserved		1	Offset (Block Application data) +198	
	Reserved		1	Offset (Block Application data) +199	
	Reserved		1	Offset (Block Application data) +200	
	Reserved		1	Offset (Block Application data) +201	
Reserved			2	Offset (Block Application data) +202	
Reserved			6	Offset (Block Application data) +204	
Reserved			2	Offset (Block Application data) +210	
Reserved			44	Offset (Block Application data)	
Reserved			7	Offset (Block Application data) + 256	

Structure		Data type	Length in bytes	Offset in bytes	Description		
Flags		SCONT	1	Offset (Block Application data) +263	Bit 0: Sleep mode status output is valid. Bit 1: Messages (host) output is valid. Bit 2 7: Reserved		
~~~							

Table 13: Data output: Block Local inputs and outputs (inputs)

Structure		Data type	Length in bytes	Offset in bytes	;	Description
			~ ~	~ ~		
Local inputs	Value	UDINT	4	Offset (B	lock Local	Logical status of the inputs
Local inputs	Value	UDINT	4	Offset (B inputs and +0	lock Local d outputs)	Logical status of the inputs microScan3 Core I/O: Bit 0: Pin 5 (universal I/O 1) Bit 1: Pin 6 (universal I/O 2) Bit 2: Pin 7 (universal I/O 3) nanoScan3 Core I/O: Bit 4: Pin 5 (universal I/O 1) Bit 5: Pin 6 (universal I/O 2) Bit 6: Pin 7 (universal I/O 3) nanoScan3 Pro I/O: Bit 4: Pin 5 (universal I/O 1) Bit 5: Pin 6 (universal I/O 2) Bit 6: Pin 7 (universal I/O 2) Bit 6: Pin 7 (universal I/O 2) Bit 7: Pin 8 (universal I/O 3) Bit 7: Pin 8 (universal I/O 4) Bit 9: Pin 10 (universal input 1) Bit 9: Pin 10 (universal input 3) Bit 11: Pin 12 (universal input 5) Bit 13: Pin 14 (universal input 7)
						• Bit 15: Pin 16 (universal input 8)

Structure		Data type	Length in bytes	Offset in bytes	Description
	Flags	UDINT	4	Offset (Block Local inputs and outputs)	An active bit indicates that the corresponding connection is config- ured.
				+ 4	microScan3 Core I/O: • Bit 0: Pin 5 (universal I/O 1) • Bit 1: Pin 6 (universal I/O 2)
					• Bit 2: Pin 7 (universal I/O 3)
					nanoScan3 Core I/O: Bit 4: Pin 5 (universal I/O 1) Bit 5: Pin 6 (universal I/O 2) Bit 6: Pin 7 (universal I/O 3) nanoScan3 Pro I/O: Bit 4: Pin 5 (universal I/O 1) Bit 5: Pin 6 (universal I/O 2) Bit 6: Pin 7 (universal I/O 3) Bit 7: Pin 8 (universal I/O 4) Bit 8: Pin 9 (universal input 1) Bit 9: Pin 10 (universal input 2) Bit 10: Pin 11 (universal input 4) Dit 40: Pin 12 (universal input 4)
					<ul> <li>Bit 12: Pin 13 (universal input 3)</li> <li>Bit 13: Pin 14 (universal input 6)</li> <li>Bit 14: Pin 15 (universal input 7)</li> </ul>
					<ul> <li>Bit 14: Pin 15 (universal input 7)</li> <li>Bit 15: Pin 16 (universal input 8)</li> </ul>
Dynamic control inputs	Speed 1	INT	2	Offset (Block Local inputs and outputs)	Speed at dynamic control input 1 in mm/s (-32,000 mm/s +32,000 mm/s)
				+ 8	
	Speed 2	INT	2	Offset (Block Local inputs and outputs)	Speed at dynamic control input 2 in mm/s (-32,000 mm/s +32,000 mm/s)
				+ 10	
	Flags	BIT	2	Offset (Block Local inputs and outputs)	Bits 0: Speed 1 valid Bit 1: Speed 2 valid
				+ 12	
	Reserved		2	Offset (Block Local inputs and outputs)	
				+ 14	

Structure		Data type	Length in bytes	Offset in bytes	Description
Reserved			12	Offset (Block Local	
				inputs and outputs)	
				+ 16	

Table 14: Data output: Block Local inputs and outputs (outputs)

Structure		Data type	Length in bytes	Offset in bytes	Description
OSSDs	Status	BIT	1	Offset (Block Local inputs and outputs) +28	Logical status of the OSSDs: Bit 0: OSSD 1.A Bit 1: OSSD 1.B Bit 2: OSSD 2.A Bit 3: OSSD 2.B
	Reserved		3	Offset (Block Local inputs and outputs) +29	
Non-safe outputs	Status	ARRAY	32	Offset (Block Local inputs and outputs) + 32	<ul> <li>Status of the outputs:</li> <li>0: Signal level of the output is LOW (0 V).</li> <li>1: Output flashes with 1 Hz.</li> <li>2: Output flashes with 4 Hz.</li> <li>3: Signal level of the output is HIGH (24 V).</li> <li>255: Output not used.</li> <li>microScan3 Core I/O:</li> <li>Byte 0: Pin 5 (universal I/O 1)</li> <li>Byte 1: Pin 6 (universal I/O 2)</li> <li>Byte 2: Pin 7 (universal I/O 3)</li> <li>nanoScan3 Core I/O:</li> <li>Byte 4: Pin 5 (universal I/O 1)</li> <li>Byte 5: Pin 6 (universal I/O 2)</li> <li>Byte 6: Pin 7 (universal I/O 2)</li> <li>Byte 4: Pin 5 (universal I/O 2)</li> <li>Byte 5: Pin 6 (universal I/O 2)</li> <li>Byte 4: Pin 5 (universal I/O 2)</li> <li>Byte 5: Pin 6 (universal I/O 3)</li> <li>nanoScan3 Pro I/O:</li> <li>Byte 4: Pin 5 (universal I/O 3)</li> <li>nanoScan3 Pro I/O:</li> <li>Byte 5: Pin 6 (universal I/O 1)</li> <li>Byte 5: Pin 6 (universal I/O 3)</li> <li>Byte 7: Pin 8 (universal I/O 3)</li> </ul>

# 7.2 Appendix B: Communication via CoLa2

#### Overview

CoLa2 (Command Language 2) is a protocol from SICK, with which a client (control, PC etc.) can access suitable SICK sensors via a network (TCP/IP).

CoLa2 is described in general in the following. You will find device-specific information in the other chapters.

#### Important information

# DANGER

Danger of using CoLa2 for safety function

CoLa2 may only be used for general monitoring and control tasks.

▶ Do not use CoLa2 for safety-related applications.

#### **Further topics**

- "CoLa2 interface of the safety laser scanner", page 18
- "Appendix C: CoLa2 variables and methods of the safety laser scanner", page 41
- "Appendix D: Examples of communication via CoLa2", page 63

### 7.2.1 Overview

How clients (controls, PCs etc.) connect with SICK sensors (servers) via CoLa2 is described below.

In this context, every IT device counts as a client, for which the following applies:

- The device accesses SICK sensors.
- The device sends data or commands to SICK sensors.
- The device receives data from SICK sensors.

The communication protocols underneath the application layer (ISO-/OSI layers 1  $\dots$  6) are not described.

It is assumed that the communication is transparent and error-free, with the following exceptions:

- Connection loss.
- Connection blockades when there are full transmit queues.

### 7.2.2 Overview of the telegram format

The protocol defines 2 headers:

- Header of the layer 7.1, message layer
  - Synchronization of the direct communication partners
  - o Specification of the length of the telegram
- Header of the layer 7.2, command layer
  - Session ID that connects 2 end-to-end partners
  - Request ID that connects a client request with the answer of the server (SICK sensor)
  - Command that is sent to the server (SICK sensor) or answer of the server
  - Additional information, depending on the command and the transmission direction

The session ID and request ID make it possible that several commands or answers can be sent to further communication between 2 partners without consideration. Several commands can also be transported in a TCP/IP packet.

With TCP/IP, all CoLa 2.0 connect requests must be sent to port 2122 of the server (SICK sensor). With the TCP/IP socket of the client, you can configure TCP_NODELAY so that even small TCP/IP packages can be sent immediately and the end-to-end communication is accelerated.

## 7.2.2.1 Layer 7.1, message layer

The header of layer 7.1, message layer, ensures that the rest of the telegram is transmitted to the receiver that is described in the header.





Table	15:	Header	of th	ie lavei	r 7.1,	message	laver
	<b>-</b>		··· ···		· · · <b>-</b> ,		

Element	Length (bytes)	Function	
STx	4	Start. 4 STx symbols (0x02) mark the start of each telegram. This pattern is not exclusive. Nevertheless, it allows you to find the start of a telegram after a synchronization loss in connection with the parameter length.	
Length	4 (Big Endian)	Length. The number of bytes that follow as the rest of the telegram. After <length> bytes, 4 STx symbols should follow again, which mark the start of the next telegram.</length>	
HubCntr	1	The value is always 0.	
NoC	1	The value is always 0.	

#### 7.2.2.2 Layer 7.2, command layer

The layer 7.2, command layer consists of a header and information.

Data flow takes place in 2 directions:

- From a client to a SICK sensor (server) for execution
- From a SICK sensor (server) for evaluation

A complete transmission consists of a pair of these byte streams. After a method invocation (see "Calling up methods", page 39), the SICK sensor sends two answers: immediately a confirmation and later a result.



Figure 10: Layer 7.2, command layer

Element	Length (bytes)	Function		
SessionID	4 (Big Endian)	The server (SICK sensor) defines this 32-bit value when structuring the session with a client. The entire commu- nication between these two partners must be marked with the session ID.		
ReqID	2 (Big Endian)	Using the ReqID, the client can assign the answer of the SICK sensor its own request. Within one session, the client numbers all requests. The server (SICK sensor) returns the ReqID together with its answer.		
Cmd	1	This byte contains the command to the server (SICK sen- sor). The server returns Cmd and changes the rest of the telegram according to the sensor-specific specification of the command.		
Mode	1	Modifier for Cmd. All servers (SICK sensors) understand a basic command set. In addition, some variables are available for all servers for reading or writing. In addition, many SICK sensors have specific parameters.		
IndexName, data	(Variable)	Specific data depending on Cmd and direction of trans- mission.		

Table 16: Layer 7.2, command layer

#### 7.2.2.2.1 Byte sequence

The byte sequence after the bytes Cmd and Mode depends on the components of a sensor and differs for many different servers (SICK sensors):

- For Big Endian, the Most Significant Byte of a value is sent first (Motorola format).
- For Little Endian, the Least Significant Byte of a value is sent first (Intel format).

The device uses Little Endian.

The client must convert the values if needed.

Example: the variable Angle has the index 35 (0x23) and should be assigned the value 456 (0x1C8):

Byte sequence	Addressing	Request	Response
Big endian	Index	WI<0x00><0x23><0x01 ><0xC8>	WA<0x00><0x23>
	Name	WN_Angle_<0x01><0xC 8>	WA_Angle_
Little endian	Index	WI<0x23><0x00><0xC8 ><0x01>	WA<0x23><0x00>
	Name	WN_Angle_<0xC8><0x0 1>	WA_Angle_

#### 7.2.3 Sessions

The connection between a client (control, PC etc.) and a server (SICK sensor) is organized as a session. First a session must be established, only then can the partners communicate. Within a session, every communication exchange (each client request and accompanying server responses) is numbered with the ReqID. The server (SICK sensor) creates the SessionID when setting up the session. The client creates a unique ReqID for each request to the server.
# 7.2.3.1 Setup of a session

Each client must initiate at least one session, i.e. a direct connection to a server (SICK sensor).

 For direct connection via Ethernet, you must open a socket for the IP address of the SICK sensor.

When setting up a session, the client can define several session parameters: Client  $\rightarrow$  Server



Figure 11: Setup of a session with a SICK sensor (server)

The client sends a command to the server (SICK sensor) via the selected hardware interface:

- HubCntr = 0
- NoC = 0
- Socketidx0 (not required as NoC = 0)
- SessionID = 0
- ReqID = unique value defined by client
- Cmd = '0' (letter 0, 0x4F)
- Mode = 'X' (letter X, 0x58)
- Timeout = number of seconds (binary, 1 ... 255)
- ClientID = identifier of the client (bytestream)

The server (SICK sensor) returns the command with the following changes:

- SessionID = The server sends the session ID that the client must use for all further requests to the server.
- Mode = 'A' (letter X, 0x41)
- The Timeout and ClientID fields are truncated.

The set-up session exists up to explicit completion or up to the timeout.

If the server (SICK sensor) does not receive a command from the client within <code>Timeout</code> seconds, it ends the session. Then the client answers requests with the <code>SessionID</code> with the error message "Invalid Session".

The client must send requests as often as necessary so that the timeout does not expire. You can implement a timer on the client for this that is reset for each request. After the timer has run out, the client should send a dummy command to maintain the session.

CoLa2 Clier	nt C	oLa2 Server 1
		BICK D
S	Send Open Session command with ClientID and Timeout	
F	Reply with SessionID "48098"	Create local session
Ş	Send any CoLa2 commands using SessionID	
A	Inswer with CoLa2 replies	
S	end Close Session command	
<b>→</b> – F	Reply with Session Closed reply	local session
	If the session is not explicitly closed, it will be destroyed after timeout, if no more telegrams are received.	

Figure 12: Expiration of a session

Command to end a session:

- Cmd = 'C'
- Mode = 'X'

Server response:

- Cmd = 'C'
- Mode = 'A'.

# 7.2.4 Using the sensors

A client normally uses 3 commands in operation:

- Read variables from SICK sensor.
- Write variables in the SICK sensor.
- Call up methods, i.e. activate a routine in the SICK sensor.

The available variables and methods are sensor specific. The following describes how the commands need to be structured and how the responses of the SICK sensor can be evaluated.

The variables and methods are addressed using their indexes. For certain sensors, they can also be addressed using their names. The sensor always responds in the mode of the invocation.

The device only supports the invocation via index.

# 7.2.4.1 Reading variables from the SICK sensor

# Table 17: Read variables

Index	Cmd = R	Mode = I	Data = (UINT)
Table 18: Sensor response			
Index	Cmd = R	Mode = A	Data = (UINT)(value)

# 7.2.4.2 Writing variables in the SICK sensor

Table 19: Write variable

Index	Cmd = W	Mode = I	Data = (UINT)(new value)

Table 20: Sensor response

Index	Cmd = W	Mode = A	Data = (UINT)
-------	---------	----------	---------------

# 7.2.4.3 Calling up methods

A method is a program in a SICK sensor that the parameters are transmitted to and that can be started.

Table 21: Calling up methods

Index	Cmd = M	Mode = I	Data = (UINT)(parameter)
Table 22: Sensor re	sponse		
Index	Cmd = M	Mode = I	Data = (UINT)

### 7.2.4.4 Error messages

The server (SICK sensor) sends error numbers in the following format:

Index	Cmd = F	Mode = A	Data = (UINT)
-------	---------	----------	---------------

The error number is sent in the sensor-specific byte sequence, see "Byte sequence", page 36. SessionID and ReqID identify the command that caused the error.

Fault number	Name	Description
0x0001	METHODIN_ACCESSDENIED	Incorrect user group. Calling up the method not allowed.
0x0002	METHODIN_UNKNOWNINDEX	Method with the specified SOPAS index is not known.
0x0003	VARIABLE_UNKNOWNINDEX	Variable with the specified SOPAS index is not known.
0x0004	LOCALCONDITIONFAILED	Local condition infringed. Example: Specified value is outside the per- missible range for the variable.
0x0005	INVALID_DATA	Invalid data for variable.
0x0006	UNKNOWN_ERROR	Errors with unknown cause.
0x0007	BUFFER_OVERFLOW	Communication buffer too small for the data amount to be serialized.
0x0008	BUFFER_UNDERFLOW	More data was expected. The assigned buffer could not be filled.
0x0009	ERROR_UNKNOWN_TYPE	The variable has an unknown type. There are undocumented internal variables in the firmware of the device.
0x000A	VARIABLE_WRITE_ ACCESS_DENIED	No values could be written in this variable.
0x000B	UNKNOWN_CMD_ FOR_NAME- SERVER	When calling up via the name: Name of the command is not known to the name server.
0x000C	UNKNOWN_COLA_COMMAND	Name of the command is not defined in the CoLa protocol. Name of the command is not known.
0x000D	METHODIN_SERVER_BUSY	Only one method can be sent to the device at the same time.
0x000E	FLEX_OUT_OF_BOUNDS	Array has the incorrect length.

Fault number	Name	Description
0x000F	EVENTREG_UNKNOWNINDEX	When calling up via index: Event is not known.
0x0010	COLA_A_VALUE_OVERFLOW	Value is too large for the value field.
0x0011	COLA_A_INVALID_CHARACTER	Symbol unknown, likely not alphanu- meric.
0x0012	OSAI_NO_MESSAGE	General error when reading a vari- able.
0x0013	OSAI_NO_ANSWER_MESSAGE	General error when writing to a variable.
0x0014	INTERNAL	Internal firmware error
0x0015	HubAddressCorrupted	Invalid length of the SOPAS hub address
0x0016	HubAddressDecoding	SOPAS hub address cannot be decoded (syntax)
0x0017	Reserved	Reserved
0x0018	Reserved	Reserved
0x0019	AsyncMethodsAreSuppressed	An asynchronous method was called up, but the device does not permit any asynchronous methods.
0x001A 	n/a	Reserved.
0x001F		
0x0020	ComplexArraysNotSupported	A complex array was found, but the device does not permit any complex arrays.
0x021	SESSION_NORESOURCES	Session cannot be structured. Server resources are exhausted as too many clients are connected.
0x022	SESSION_UNKNOWNID	Unknown session ID in the telegram header
0x023	CANNOT_CONNECT	Connection cannot be established.
0x024	InvalidPortId	PortID is not known to the server.
0x025	ScanAlreadyActive	A scan command has already been carried out. Wait until the scan is complete.
0x026	OutOfTimers	SOPAS scan: The server cannot create a timer.
0x0027	n/a	Reserved

# 7.2.5 CoLa2 data types

# Table 24: CoLa2 data types

Name	Description	Value range
BOOL	Boolean	True (1), false (0)
USINT	Unsigned short (8 bit)	0 255
UINT	Unsigned int (16 bit)	0 65535
UDINT	Unsigned double int (32 bit)	0 4294967295
ULINT	Unsigned long int (64 bit)	0 18446744073709551616
SINT	Signed short (8 bit)	-128 127
INT	Signed int (16 bit)	-32768 32767

Name	Description	Value range
DINT	Signed double int (32 bit)	-2147483648 2147483647
LINT	Signed long int (64 bit)	-9223372036854775808 9223372036854775807
REAL	Float single precision (32 bit)	See IEEE 754
LREAL	Float double precision (64 bit)	See IEEE 754
ENUM8	Short enumeration (8 bit)	Values defined in a selection list (0 255)
ENUM16	Enumeration (16 bit)	Values defined in a selection list (0 65535)
STRING	Array of visible symbols (array of 8-bit symbols)	Symbol = USInt with a value between 0x20 0xFF $^{\rm 1)}$
FLEXSTRING	Array of visible symbols with leading length specification (UInt) (array of 8- bit symbols)	See string and FlexArray
BYTE	Bitset (8 bit)	Value is transmitted as an array from USInt.
WORD	Bitset (16 bit)	Value is transmitted as an array from USInt.
DWORD	Bitset (32 bit)	Value is transmitted as an array from USInt.
LWORD	Bitset (64 bit)	Value is transmitted as an array from USInt.
XBYTE	Bitset (8, 16, 24, 32 bit)	Value is transmitted as an array from USInt.
SCONT	Bitset (8 bit)	Value is transmitted as USInt.
CONT	Bitset (16 bit)	Value is transmitted as UInt.
DCONT	Bitset (32 bit)	Value is transmitted as UDInt.
LCONT	Bitset (64 bit)	Value is transmitted as ULInt.
STRUCTURE	Sequence of various types	Possible types: basic types, struc- tures, arrays.
ARRAY	Repetition of a type	The length is defined for every array. Possible types: basic types, struc- tures, arrays.
FLEXARRAY	Repetition of variable length of one type	The maximum length is defined for every FlexArray. The actual length is transmitted as UInt at the start of the FlexArray. Possible types: basic types, struc- tures, arrays.

¹⁾ Coded according to ISO 8859-15.

# 7.3 Appendix C: CoLa2 variables and methods of the safety laser scanner

The documented variables and methods of the safety laser scanner can be used by programs via the CoLa2 protocol.

The communication examples serve as illustrations. The session ID in the CoLa2 header is assigned by the device at the start of a CoLa2 session. In real communication, the session ID is therefore probably different to the examples.

# 7.3.1 Variables



Some variables have a 4 byte-long version header. If the first byte of this header is 0, then the contents of the variable is invalid and may not be used.

### 7.3.1.1 Identification

# 7.3.1.1.1 Serial number

#### Overview

Name	Serial number
Index	3
Data type	FLEXSTRING (length $\leq$ 24)
Access rights	Read

# Description

The variable only offers read access.

The variable contains 2 serial numbers:

- Serial number (device without system plug)
- Serial number (system plug)

The value is output as a string (ISO 8859-15).

The serial numbers are separated by a slash (0x2F).

# **Communication example**

Table 25: Serial number: Variable recall

Co	La <b>2</b> t	eleg	ram	(HE	X)											ISO 8859-15
02	02	02	02	00	00	00	0c	00	00	5a	84	91	dd	00	02	
52	49	03	00													RI

Table 26: Serial number: Sensor response (example)

Col	.a2 t	eleg	ram	(HE	X)											ISO 8859-15
02	02	02	02	00	00	00	1f	00	00	5a	84	91	dd	00	02	•••••Z•••••
52	41	03	00	11	00	31	36	34	31	39	30	38	37	2f	31	RA16419087/1
36	34	30	31	36	33	38										6401638

# 7.3.1.1.2 Firmware version

#### Overview

Name	Firmware version
Index	4
Data type	FLEXSTRING (length $\leq 24$ )
Access rights	Read

# Description

The variable only offers read access.

The variable contains the firmware version of the device.

The value is output as a string (ISO 8859-15).

### **Communication example**

#### Table 27: Firmware version: Variable recall

Col	.a2 t	eleg	ram	(HE	X)											ISO 8859-15
02	02	02	02	00	00	00	0c	00	00	35	2d	ba	75	00	02	
52	49	04	00													RI

# Table 28: Firmware version: Sensor response (example)

CoLa2 telegram (HEX)	ISO 8859-15
02 02 02 02 00 00 00 14 00 00 35 2d ba 75 00 02	5u
52 41 04 00 06 00 52 30 31 2e 31 33	RAR01.13

# 7.3.1.1.3 Type code

#### Overview

Name	Type code
Index	13
Data type	FLEXSTRING (length $\leq$ 32)
Access rights	Read

# Description

The variable only offers read access.

The variable contains the type code of the device.

The value is output as a string (ISO 8859-15).

# **Communication example**

### Table 29: Type code: Variable recall

CoLa2	teleg	ram	(HE)	<b>K</b> )											ISO 8859-15
02 02	02	02	00	00	00	0c	00	00	38	41	5a	71	00	02	8AZq
52 49	0d	00													RI

Table 30: Type code: Sensor response (example)

Col	_a <b>2</b> t	eleg	ram	(HE	X)											ISO 8859-15
02	02	02	02	00	00	00	20	00	00	38	41	5a	71	00	02	
52	41	0d	00	12	00	4d	49	43	53	33	2d	41	42	41	5a	RAMICS3-ABAZ
35	35	49	5a	31	00	00	00									55IZ1

### 7.3.1.1.4 Part number

### Overview

Name	Part number
Index	14
Data type	FLEXSTRING (length $\leq$ 32)
Access rights	Read

# Description

The variable only offers read access.

The variable contains the part number of the device.

The value is output as a string (ISO 8859-15).

## **Communication example**

#### Table 31: Part number: Variable recall

Col	.a2 t	eleg	ram	(HE	X)											ISO 8859-15
02	02	02	02	00	00	00	0c	00	00	af	90	a7	6d	00	02	m
52	49	0e	00													RI

# Table 32: Part number: Sensor response (example)

Col	.a <b>2</b> t	eleg	ram	(HE	X)											ISO 8859-15
02	02	02	02	00	00	00	15	00	00	af	90	a7	6d	00	02	m
52	41	0e	00	07	00	31	30	37	35	38	34	38				RA107584

# 7.3.1.2 Configuration

### 7.3.1.2.1 Device name

#### Overview

Name	Device name
Index	17
Data type	FLEXSTRING (length $\leq$ 32)
Access rights	Read

# Description

The variable only offers read access.

The variable contains the configured name of the device.

The value is output as a string (ISO 8859-15).

# **Communication example**

Table 33: Device name: Variable recall

Со	_a2 t	eleg	ram	(HE	X)											ISO 8859-15
02	02	02	02	00	00	00	0c	00	00	49	ес	b2	01	00	02	I
52	49	11	00													RI

#### Table 34: Device name: Sensor response (example)

CoL	.a <b>2</b> t	eleg	ram	(HE	X)											ISO 8859-15
02	02	02	02	00	00	00	1a	00	00	49	ec	b2	01	00	02	I
52	41	11	00	0c	00	4d	79	44	65	76	69	63	65	4e	61	RAMyDeviceNa
6d	65															me

# 7.3.1.2.2 Project name

#### Overview

Name	Project name
Index	18
Data type	FLEXSTRING (length $\leq$ 32)
Access rights	Read

# Description

The variable only offers read access.

The variable contains the name of the project that is configured in the device.

The value is output as a string (ISO 8859-15).

### Communication example

Table 35: Project name: Variable recall

Co	La2	teleg	ram	(HE	X)											ISO 8859-15
02	02	02	02	00	00	00	0c	00	00	58	e4	17	9d	00	02	X
52	49	12	00													RI

# Table 36: Project name: Sensor response (example)

Col	.a <b>2</b> t	eleg	ram	(HE	X)											ISO 8859-15
02	02	02	02	00	00	00	1b	00	00	58	e4	17	9d	00	02	X
52	41	12	00	0d	00	4d	79	50	72	6f	6a	65	63	74	4e	RAMyProjectN
61	6d	65														ame

# 7.3.1.2.3 Application name

# Overview

Name	Application name
Index	33
Data type	STRUCTURE
Access rights	Read

# Description

The variable only offers read access.

The variable contains the configured name of the application.

The value is output as a string (ISO 8859-15).

### Structure

Data field		Data type	Length in bytes	Offset in bytes	Description
tVersion	cVersion	USINT	1	0	0: The values of this variable are invalid. Other values: valid.
	u8Major	USINT	1	1	Main version number. Different numbers stand for incompatible versions.
	u8Minor	USINT	1	2	Sub version number. Versions with different sub version numbers are compatible if the main ver- sions numbers are the same.
	u8Release	USINT	1	3	Release number.
tName	u32Length	UDINT	4	4	Length of the string: Number of the bytes used in au8Data.
	au8Data	ARRAY (USINT)	32	8	Content of the string. Bytes not used contain zeroes.

# **Communication example**

Table 38: Application name: Variable recall

Col	_a <b>2</b> t	eleg	ram	(HE	X)											ISO 8859-15
02	02	02	02	00	00	00	0c	00	00	b3	a2	a4	11	00	02	
52	49	21	00													RI!.

Table 39: Application name: Sensor response (example)

С	oLa2	2 tele	egram	n (HE	X)											ISO 8859-15
0	2 03	2 02	2 02	00	00	00	34	00	00	b3	a2	a4	11	00	02	4
5	2 4	1 21	1 00	56	01	00	00	11	00	00	00	4d	79	41	70	RA!.VMyAp
7	0 6	c 69	9 63	61	74	69	6f	6e	4e	61	6d	65	00	00	00	plicationName
0	0 0	0 00	0 00	00	00	00	00	00	00	00	00					

### 7.3.1.2.4 User name

### Overview

Name	User name
Index	35
Data type	STRUCTURE
Access rights	Read

# Description

The variable only offers read access.

The variable contains the configured name of the user.

The value is output as a string (ISO 8859-15).

# Structure

|--|

Data field		Data type	Length in bytes	Offset in bytes	Description
tVersion	cVersion	USINT	1	0	0: The values of this variable are invalid. Other values: valid.
	u8Major	USINT	1	1	Main version number. Different numbers stand for incompatible versions.
	u8Minor	USINT	1	2	Sub version number. Versions with different sub version numbers are compatible if the main versions numbers are the same.
	u8Release	USINT	1	3	Release number.
tName	u32Length	UDINT	4	4	Length of the string: Number of the bytes used in au8Data.
	au8Data	ARRAY (USINT)	32	8	Content of the string. Bytes not used contain zeroes.

# **Communication example**

Table 41: User name: Variable recall

Col	CoLa2 telegram (HEX)												ISO 8859-15				
02	02	02	02	00	00	00	0c	00	00	f6	36	a1	fd	00	02		6
52	49	23	00														RI#.

### Table 42: User name: Sensor response (example)

С	CoLa2 telegram (HEX)												ISO 8859-15					
0	2 (	02	02	02	00	00	00	2c	00	00	f6	36	a1	fd	00	02		,
5	2 4	41	23	00	56	01	00	00	0a	00	00	00	4d	79	55	73		RA#.VMyUs
6	5 '	72	4e	61	6d	65	00	00	00	00	00	00	00	00	00	00		erName
0	0 (	00	00	00														

# 7.3.1.2.5 Metadata of the configuration

# Overview

Name	Meta data of the configuration
Index	28
Data type	STRUCTURE
Access rights	Read

# Description

The variable only offers read access.

The variable contains the checksum of the configuration and the date and time of the last change and configuration transmission.

Configuration of the fields, field sets and monitoring cases can be called up via other variables. Additional information is available from your SICK subsidiary.

# Structure

Table 43: Meta data of the configuration: Structure

Data field		Data type	Length in bytes	Offset in bytes	Description
tVersion	cVersion	USINT	1	0	0: The values of this variable are invalid. Other values: valid.
	u8Major	USINT	1	1	Main version number. Different numbers stand for incompatible versions.
	u8Minor	USINT	1	2	Sub version number. Versions with different sub version numbers are compatible if the main ver- sions numbers are the same.
	u8Release	USINT	1	3	Release number.
tModification- Time	tDate	UINT	2	4	<ul> <li>Date:</li> <li>If time synchronization is active: days since January 1, 1972</li> <li>If time synchronization is not active: number of full 24-hour cycles since the device was switched on</li> </ul>
	Reserved		2	6	
	tTime	UDINT	4	8	<ul> <li>Time:</li> <li>If time synchronization is active: milliseconds since midnight</li> <li>If time synchronization is not active: milliseconds since the start of the current 24-hour cycle since switching on the device</li> </ul>
tTransferTime	tDate	UINT	2	12	<ul> <li>Date:</li> <li>If time synchronization is active: days since January 1, 1972</li> <li>If time synchronization is not active: number of full 24-hour cycles since the device was switched on</li> </ul>
	Reserved		2	14	
	tTime	UDINT	4	16	<ul> <li>Time:</li> <li>If time synchronization is active: milliseconds since midnight</li> <li>If time synchronization is not active: milliseconds since the start of the current 24-hour cycle since switching on the device</li> </ul>

47

Data field	Data type	Length in bytes	Offset in bytes	Description
Reserved		4	20	
Reserved		12	24	
u32AppCheck- sum	UDINT	4	36	Checksum (function)
Reserved		12	40	Checksum (function and network)
u320ver- allChecksum	UDINT	4	52	
Reserved		12	56	
tIntegrityHash	4 × UDINT	16	68	MD5 hash

# **Communication example**

# Table 44: Meta data of the configuration: Variable recall

Col	CoLa2 telegram (HEX)												ISO 8859-15				
02	02	02	02	00	00	00	0c	00	00	91	af	71	7d	00	02		q}
52	49	1c	00														RI

Table 45: Meta data of the configuration: Sensor response (example)

Col	CoLa2 telegram (HEX)														ISO 8859-15		
02	02	02	02	00	00	00	60	00	00	91	af	71	7d	00	02		`q}
52	41	1c	00	52	01	00	00	c2	40	00	00	fa	2c	a0	02		RAR@,
c2	40	00	00	fa	2c	a0	02	00	00	00	00	00	00	00	00		.@,
00	00	00	00	00	00	00	00	a3	89	54	9e	00	00	00	00		T
00	00	00	00	00	00	00	00	f5	ee	1a	48	00	00	00	00		H
00	00	00	00	00	00	00	00	29	e5	Оc	aa	39	64	3d	32		)9d=2
65	4f	43	ee	3f	fa	17	9f										eOC.?

# Table 46: Sensor response (example), decoded

Data field	Value
tModificationTime	2017-05-22 12:14:11.706000
tTransferTime	2017-05-22 12:14:11.706000
u32AppChecksum	a389549e
u320verallChecksum	f5ee1a48
tIntegrityHash	29e50caa39643d32654f43ee3ffa179f

# 7.3.1.3 Device status

# 7.3.1.3.1 Status overview

### Overview

Name	Status overview
Index	23
Data type	STRUCTURE
Access rights	Read

# Description

The variable only offers read access.

The variable contains the following information:

- Status of the device
- Status of the configuration
- Status of the application
- Current system time
- Error code and time stamp of the error (only if there is an error present)

### Structure

### Table 47: Status overview: Structure

Data field		Data type	Length in bytes	Offset in bytes	Description
tVersion	cVersion	USINT	1	0	0: The values of this variable are invalid. Other values: valid.
	u8Major	USINT	1	1	Main version number. Different numbers stand for incompatible versions.
	u8Minor	USINT	1	2	Sub version number. Versions with different sub version numbers are compatible if the main versions numbers are the same.
	u8Release	USINT	1	3	Release number.
eDeviceState		ENUM8	1	4	OxO: Normal Ox1: Error Ox2: Initialization Ox3: Switch off Ox4: Optics cover calibration
eConfigState		ENUM8	1	5	OxO: Unknown Ox1: Configuration missing Ox2: Device is being configured Ox3: Not verified Ox4: Declined Ox5: Verified Ox6: Internal error Ox7: Configuration is being verified
eApplication- State		ENUM8	1	6	0x0: Stopped 0x1: Starting 0x2: Waiting for partner 0x3: Waiting for inputs 0x4: Started 0x5: Standby state
Reserved			1	7	
Reserved			2	8	
Reserved			2	10	

Data field		Data type	Length in bytes	Offset in bytes	Description
tCurrentTime	u32PowerOn- Count	UDINT	4	12	
	tTime	UDINT	4	16	<ul> <li>Time:</li> <li>If time synchronization is active: milliseconds since midnight</li> <li>If time synchronization is not active: milliseconds since the start of the current 24-hour cycle since switching on the device</li> </ul>
	tDate	UINT	2	20	<ul> <li>Date:</li> <li>If time synchronization is active: days since January 1, 1972</li> <li>If time synchronization is not active: number of full 24-hour cycles since the device was switched on</li> </ul>
	Reserved		2	22	
tErrorInfo	u32Code	UDINT	4	24	Error code as on the display of the device (only if error is present).
	Reserved		16	28	
	Reserved		8	44	
	tTime	UDINT	4	52	<ul> <li>Time:</li> <li>If time synchronization is active: milliseconds since midnight</li> <li>If time synchronization is not active: milliseconds since the start of the current 24-hour cycle since switching on the device</li> </ul>
	tDate	UDINT	2	56	<ul> <li>Date:</li> <li>If time synchronization is active: days since January 1, 1972</li> <li>If time synchronization is not active: number of full 24-hour cycles since the device was switched on</li> </ul>
	Reserved		2	58	
Reserved			4	60	

# Communication example

# Table 48: Status overview: Variable recall

Col	_a <b>2</b> t	eleg	ram	(HE	X)											ISO 8859-15
02	02	02	02	00	00	00	0c	00	00	a0	03	08	a1	00	02	
52	49	17	00													RI

# Table 49: Status overview: Sensor response (example)

CoL	.a <b>2</b> t	eleg	ram	(HE	X)											ISO 8859-15
02	02	02	02	00	00	00	4c	00	00	a0	03	08	a1	00	02	L
52	41	17	00	52	01	00	00	00	05	04	00	00	00	00	00	RAR
b5	02	00	00	41	b6	d4	00	00	00	00	00	00	00	00	00	A
00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
af	01	00	00													

### Table 50: Sensor response (example), decoded

Data field	Value
eDeviceState	0
eConfigState	5
eApplicationState	4
tCurrentTime	
u32PowerOnCount	693
tTime	13940289
tDate	0
tErrorInfo	
u32Code	0000000
tTime	0
tDate	0

# 7.3.1.3.2

# SOPAS device status

# Overview

Name	SOPAS device status
Index	15
Data type	ENUM8
Access rights	Read

# Description

# The variable contains general information on the device status.

Table 51: SOPAS device status: Values

Value	Meaning	Quality of the measurement
0	Unclear device status	Not defined
1	Device start	Not defined
2	Service mode (e.g. firmware update, optics cover calibration)	Not defined
3	Normal operation	Good measurement
4	Device is waiting (e.g. for communi- cation partner or input signal)	Unclear or no measurement
5	Maintenance recommended (e.g. contamination warning)	Good measurement
6	Maintenance required (e.g. configu- ration incompatible)	Unclear measurement
7	Correctable error (e.g. configuration error, network error)	Malfunction
8	Serious error (e.g. contamination error, configuration error, network error)	Malfunction

# **Communication example**

# Table 52: SOPAS device status: Variable recall

Co	La2 t	eleg	ram	(HE	<b>X</b> )											ISO 8859-15
02	02	02	02	00	00	00	0c	00	00	59	ac	3f	69	00	02	Y.?i
52	49	0f	00													RI

### Table 53: SOPAS device status: Sensor response (example)

Co	La2 t	eleg	ram	(HE	X)											ISO 8859-15
02	02	02	02	00	00	00	0d	00	00	59	ac	3f	69	00	02	Y.?i
52	41	0f	00	03												RA

# 7.3.1.3.3 Note on troubleshooting

Overview

Name	Note on troubleshooting
Index	16
Data type	CONT
Access rights	Read

# Description

Together with the SOPAS device status variables, the "Note on troubleshooting" variable provides information on troubleshooting.

Table 54: Note on troubleshooting: Values

Value	Meaning
0x0001 (b0000 0000 0000 0001)	Configure device, verify configuration
0x0002 (b0000 0000 0000 0010)	Test configuration, test device variant
0x0004 (b0000 0000 0000 0100)	Check communication partner, check manipulation
0x0008 (b0000 0000 0000 1000)	Check input signals, check network and other connections
0x0010 (b0000 0000 0001 0000)	Check the error messages
0x0020 (b0000 0000 0010 0000)	Configure device (including network settings)
0x0040 (b0000 0000 0100 0000)	Checking the firmware
0x0080 (b0000 0000 1000 0000)	Wait a few seconds

### **Communication example**

Table 55: Note on troubleshooting: Variable recall

Col	La2 t	eleg	ram	(HE	X)											ISO 8859-15
02	02	02	02	00	00	00	0c	00	00	59	ac	3f	69	00	03	Y.?i
52	49	10	00													RI

### Table 56: Note on troubleshooting: Sensor response (example)

Col	La2 t	eleg	ram	(HE	X)											ISO 8859-15
02	02	02	02	00	00	00	0e	00	00	59	ac	3f	69	00	03	Y.?i
52	41	10	00	00 (	00											RA

# 7.3.1.3.4 Device temperature

### Overview

Name	Device temperature
Index	362
Data type	STRUCTURE
Access rights	Read

### Description

The variable only offers read access.

The variable contains the temperature that is measured in the device 's sender module.

The temperature value can serve as an approximate guide for the interior temperature of the device. The value can significantly deviate from the specified operating temperature.

### Structure

Table 57: Device temperature: Structure

Data field	Data type	Length in bytes	Offset in bytes	Description
Reserved		6	0	
i16Temperature	INT	2	6	Temperature in 0.1 °C
Reserved		8	8	

### **Communication example**

Table 58: Device temperature: Variable recall

Col	.a <b>2</b> t	eleg	ram	(HE	X)											ISO 8859-15
02	02	02	02	00	00	00	0c	00	00	Зc	f5	29	13	00	03	
52	49	бa	01													RIj.

Table 59: Device temperature: Sensor response (example)

Col	.a2 t	eleg	ram	(HE	X)											ISO 8859-15
02	02	02	02	00	00	00	1c	00	00	3c	f5	29	13	00	03	
52	41	6a	01	02	00	7a	13	dc	38	75	01	68	32	9a	3d	RAjz8u.h2.=
00	00	69	13													i.

7.3.1.3.5

# Device time (nanoScan3 only)

### Overview

Name	Device time
Index	64203
Data type	STRUCTURE
Access rights	Read

### Description

The variable only offers read access.

The variable contains the device time, the configured time zone and the time since device start.

This variable is only available for the nanoScan3.

### Structure

Table 60: Device time: Structure

Data field		Data type	Length in bytes	Offset in bytes	Description
tVersion	cVersion	USINT	1	0	0: The values of this variable are invalid. Other values: valid.
	u8Major	USINT	1	1	Main version number. Different numbers stand for incompatible versions.
	u8Minor	USINT	1	2	Sub version number. Versions with different sub version numbers are compatible if the main versions numbers are the same.
	u8Release	USINT	1	3	Release number.
UTC Time	tDate	UINT	2	4	<ul> <li>Date:</li> <li>If time synchronization is active: days since January 1, 1972</li> <li>If time synchronization is not active: number of full 24-hour cycles since the device was switched on</li> </ul>
	Reserved		2	6	
	tTime	UDINT	4	8	<ul> <li>Time:</li> <li>If time synchronization is active: milliseconds since midnight</li> <li>If time synchronization is not active: milliseconds since the start of the current 24-hour cycle since switching on the device</li> </ul>
Reserved			4	12	
Time Zone	i320ffsetMins	DINT	4	16	Time difference to UTC in minutes.
	acName	STRING	8	20	Abbreviation for time zones, e.g. CET for Central European Time.
	Reserved		4	28	
Power-on Time	tDate	UINT	2	32	<ul> <li>Date:</li> <li>If time synchronization is active: days since January 1, 1972</li> <li>If time synchronization is not active: number of full 24-hour cycles since the device was switched on</li> </ul>
	Reserved		2	34	
	tTime	UDINT	4	36	<ul> <li>Time:</li> <li>If time synchronization is active: milliseconds since midnight</li> <li>If time synchronization is not active: milliseconds since the start of the current 24-hour cycle since switching on the device</li> </ul>

# Communication example

Table 61: Device time: Variable recall

Col	.a <b>2</b> t	eleg	ram	(HE	X)											ISO 8859-15
02	02	02	02	00	00	00	0c	00	00	3d	f0	a9	21	00	03	
52	49	cb	fa													RI

Table 62: Device time: Sensor response (example)

Co	La2 t	teleg	ram	(HE	X)												ISO 8859-15
02	2 02	02	02	00	00	00	34	00	00	3d	f0	a9	21	00	0	3	4 = !
52	2 41	cb	fa	52	01	00	00	3d	44	01	00	77	67	1d	0	3	RAR=Dwg
04	l 19	e3	02	Зc	00	00	00	43	45	54	00	00	00	00	0	0	<cet< td=""></cet<>
00	00	00	00	3d	44	00	00	11	3e	05	03						=D>

### 7.3.1.4 Measurement Data

# 7.3.1.4.1 Saved configuration of the data output channel

# Overview

Name	Saved configuration of the data output channel
Index	177
Data type	STRUCTURE
Access rights	Read

# Description

Contains the saved configuration of all data output channels. The saved configuration is configured with Safety Designer. It is also active after restarting the device. The currently active configuration can deviate from the saved configuration if the configuration has been changed with the <code>NavData_ChangeCommSettings</code> method.

### Structure

Table 63: Saved configuration of the data output channel: Structure

Dat	a field	Data type	Length in bytes	Offset in bytes	Description
rsion	cVersion	USINT	1	0	0: The values of this variable are invalid. Other values: valid.
tVe	u8Major	USINT	1	1	Main version number. Different numbers stand for incompatible versions.
	u8Minor	USINT	1	2	Sub version number. Versions with different sub version numbers are compatible if the main versions numbers are the same.
	u8Release	USINT	1	3	Release number.

Dat	a field	Data type	Length in bytes	Offset in bytes	Description
3)	oEnabled	BOOL	1	4	True: The channel is active. False: The channel is not active.
For every channel (C	eInterfaceType	ENUM8	1	5	The network interface via which the data output takes place: • 0: EFI-pro • 1: Ethernet/IP • 3: PROFINET • 4: Non-secure Ethernet
_	Reserved		2	6	
	tReceiverAddress	4 × BYTE	4	8	IP address of the system to which the measure- ment data is sent via UDP (Little Endian).
	u16PortNumber	UINT	2	12	UDP port of the system to which the measure- ment data is sent via UDP.
	u16PublishingFreq	UINT	2	14	Frequency with which the measurement data is output as a fraction of the scanning frequency. 1 means that each scan is output. 2 means that every second scan is output.
	r10_22AngleStart	DINT	4	16	Angle at which the measurement data output should begin. The angle is saved in degrees (not radians) with a resolution of $1/4194304^{\circ}$ in the range of $-47.5^{\circ}$ to $227.5^{\circ}$ . If i16AngleStart = 0 and i16AngleStop = 0, then all measurement data is output.
	r10_22AngleStop	DINT	4	20	Angle at which the measurement data output should end. The angle is saved in degrees (not radians) with a resolution of $1/4194304^{\circ}$ in the range of $-47.5^{\circ}$ to $227.5^{\circ}$ . If i16AngleStart = 0 and i16AngleStop = 0, then all measurement data is output.
	tFeatures	CONT	2	24	<ul> <li>Data blocks that should be contained in the data output:</li> <li>Bit 0: Device status</li> <li>Bit 1: Configuration of the data output</li> <li>Bit 2: Measurement data</li> <li>Bit 3: Field interruption</li> <li>Bit 4: Application data</li> <li>Bit 5: Local inputs and outputs</li> <li>Bit 6 Bit 15: Reserved</li> </ul>
	Reserved		2	26	

# **Communication example**

Table 64: Saved configuration of the data output channel: Variable recall

Col	.a <b>2</b> t	eleg	ram	(HE	X)											ISO 8859-15
02	02	02	02	00	00	00	0c	00	00	d8	2e	b7	27	00	03	
52	49	b1	00													RI

Table 65: Saved configuration of the data output channel: Sensor response (example)

Col	La2 t	eleg	ram	(HE	X)											ISO 8859-15
02	02	02	02	00	00	00	70	00	00	d8	2e	b7	27	00	03	p
52	41	b1	00	56	01	00	00	00	00	00	00	00	00	00	00	RAV
ac	17	01	00	00	00	00	00	00	00	00	00	00	00	00	00	
00	00	00	00	00	00	00	00	ac	17	01	00	00	00	00	00	
00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
ac	17	01	00	00	00	00	00	00	00	00	00	00	00	00	00	
00	00	00	00	00	00	00	00	ac	17	01	00	00	00	00	00	
00	00	00	00	00	00	00	00									•••••

# 7.3.1.4.2

Active configuration of the data output channel

# Overview

Name	Active configuration of the data output channel
Index	178
Data type	STRUCTURE
Access rights	Read

# Description

Contains the currently active configuration of all data output channels. The currently active configuration can deviate from the saved configuration. The saved configuration will be active again after restarting the device in this case. The variable also contains the derived configuration for each channel.

### Structure

Table 66: Active configuration of the data output channel: Structure

Dat	a fie	ld	Data type	Length in bytes	Offset in bytes	Description				
rsion		cVersion	USINT	1	0	0: The values of this variable are invalid. Other values: valid.				
tVe		u8Major	USINT	1	1	Main version number. Different numbers stand for incompatible versions.				
		u8Minor	USINT	1	2	Sub version number. Versions with different sub version numbers are compatible if the main versions numbers are the same.				
		u8Release	USINT	1	3	Release number.				
3)	value	oEnabled	BOOL	1	4	True: The channel is active. False: The channel is not active.				
or every channel (C	Configured	eInterfaceType	ENUM8	1	5	The network interface via which the data output takes place: • 0: EFI-pro • 1: Ethernet/IP • 3: PROFINET • 4: Non-secure Ethernet				
<b>"</b>		Reserved		2	6					
		tReceiverAddress	4 × BYTE	4	8	IP address of the system to which the measure- ment data is sent via UDP (Little Endian).				
		u16PortNumber	UINT	2	12	UDP port of the system to which the measure- ment data is sent via UDP.				

Data	ı fie	ld	Data type	Length in bytes	Offset in bytes	Description
		u16PublishingFreq	UINT	2	14	Frequency with which the measurement data is output as a fraction of the scanning frequency. 1 means that each scan is output. 2 means that every second scan is output.
		r10_22AngleStart	DINT	4	16	Angle at which the measurement data output should begin. The angle is saved in degrees (not radians) with a resolution of $1/4194304^{\circ}$ in the range of $-47.5^{\circ}$ to $227.5^{\circ}$ . If i16AngleStart = 0 and i16AngleStop = 0, then all measurement data is output.
		r10_22AngleStop	DINT	4	20	Angle at which the measurement data output should end. The angle is saved in degrees (not radians) with a resolution of $1/4194304^{\circ}$ in the range of $-47.5^{\circ}$ to $227.5^{\circ}$ . If i16AngleStart = 0 and i16AngleStop = 0, then all measurement data is output.
		tFeatures	CONT	2	24	<ul> <li>Data blocks that should be contained in the data output:</li> <li>Bit 0: Device status</li> <li>Bit 1: Configuration of the data output</li> <li>Bit 2: Measurement data</li> <li>Bit 3: Field interruption</li> <li>Bit 4: Application data</li> <li>Bit 5: Local inputs and outputs</li> <li>Bit 6 Bit 15: Reserved</li> </ul>
		Reserved		2	26	
	alues	u16MultiplicationFactor	UINT	2	28	Factor with which the distance values have to be multiplied.
	Used v	u16NumBeams	UINT	2	30	Number of beams based on the configured start angle and end angle.
		u16ScanTime	UINT	2	32	Duration of a scan in milliseconds
		Reserved		2	34	
		r10_22StartAngle	DINT	4	36	Start angle of the first beam (derived from the configured start angle). The angle is output in degrees (not radians) with a resolution of $1/4194304^{\circ}$ in the range of $-360^{\circ}$ to $360^{\circ}$ .
		r10_22AngularScanBeam- Resolution	DINT	4	40	Angular resolution, the angle between two neighboring beams. The angle is output in degrees (not radians) with a resolution of $1/4194304^{\circ}$ in the range of $-360^{\circ}$ to $360^{\circ}$ .
		u32InterBeamPeriod	UDINT	4	44	Time between 2 successive beams in microsec- onds.
		Reserved		4	48	

# **Communication example**

Table 67: Active configuration of the data output channel: Variable recall

Co	La2	teleg	gram	(HE	X)											ISO 8859-15
02	02	02	02	00	00	00	0c	00	00	48	58	29	93	00	03	HX)
52	49	b2	00													RI

Table 68: Active configuration of the data output channel: Sensor response (example)

Col	.a2 t	eleg	ram	(HE	X)											ISO 8859-15
02	02	02	02	00	00	00	d0	00	00	48	58	29	93	00	03	HX)
52	41	b2	00	52	01	01	00	00	00	00	00	00	00	00	00	RAR
ac	17	01	00	00	00	00	00	00	00	00	00	00	00	00	00	
01	00	00	00	1e	00	00	00	00	00	00	00	f8	d5	20	00	
00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
ac	17	01	00	00	00	00	00	00	00	00	00	00	00	00	00	
01	00	00	00	1e	00	00	00	00	00	00	00	f8	d5	20	00	
00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
ac	17	01	00	00	00	00	00	00	00	00	00	00	00	00	00	
01	00	00	00	1e	00	00	00	00	00	00	00	f8	d5	20	00	
00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
ac	17	01	00	00	00	00	00	00	00	00	00	00	00	00	00	
01	00	00	00	1e	00	00	00	00	00	00	00	f8	d5	20	00	
00	00	00	00	00	00	00	00									

7.3.1.4.3

# Most recent measurement data

# Overview

Name	Most recent measurement data
Index	<ul> <li>179: Channel 0</li> <li>180: Channel 1</li> <li>181: Channel 2</li> <li>182: Channel 3</li> </ul>
Data type	STRUCTURE
Access rights	Read

# Description

Contains the most recent data from a channel. Each channel has its own index. The data is only valid if the channel is active.

# Structure

Information on the structure see "Appendix A: Structure of data output", page 21.

### **Communication example**

 Table 69: Most recent measurement data: Variable recall

CoLa2 telegram (HEX)		ISO 8859-15
02 02 02 02 00 0	0 00 0c 00 00 73 61 cf 5f 00 03	sa
52 49 b3 00		RI

### Table 70: Most recent measurement data: Sensor response (example)

CoL	La2 telegram (HEX)														ISO 8859-15		
02	02	02	02	00	00	02	f0	00	00	73	61	cf	5f	00	03		sa
52	41	b3	00	52	02	00	00	6d	b5	0a	01	8c	8f	0a	01		RARm
00	00	00	00	61	02	00	00	7c	02	00	00	00	00	00	00		a
d4	58	00	00	4c	00	10	00	60	00	18	00	7c	00	c4	00		.XL`
44	01	90	00	d8	01	08	01	00	00	00	00	00	00	00	00		D
00	00	00	00	00	00	00	00	00	00	00	00	01	00	00	00		
01	55	00	00	ff	00	00	00	00	00	01	00	00	00	00	00		.U
01	00	00	00	01	00	30	00	1e	00	00	00	сO	2d	5c	fd		0\.
f8	d5	20	00	2b	00	00	00	00	00	00	00	01	00	00	00		+
30	00	00	00	80	05	1a	01	83	05	1a	01	83	05	1a	01		0
86	05	1a	01	85	05	1a	01	85	05	1a	01	88	05	1a	01		
88	05	1a	01	8c	05	1a	01	8d	05	1a	01	90	05	1a	01		
[]	]																[]

# 7.3.2 Methods

# 7.3.2.1 Identifying the device

# Overview

Name	Identifying the device
Index	14
Data type (input)	UINT
Data type (output)	-

### Description

The method allows the display of the device to flash for a defined period of time. Flashing can help the user to identify the device.

# Input parameters

Duration of the flashing in seconds, coded as UInt.

# **Output values**

None.

# **Communication example**

Table 71: Identifying device: Method invocation

Col	_a <b>2</b> t	eleg	ram	(HE	X)											ISO 8859-15
02	02	02	02	00	00	00	0e	00	00	b0	36	2c	2d	00	02	
4d	49	0e	00	05	00											MI

### Table 72: Identifying device: Sensor response (example)

Col	La2 t	eleg	ram	(HE	X)											ISO 8859-15
02	02	02	02	00	00	00	0c	00	00	b0	36	2c	2d	00	02	
41	49	0e	00													AI

# 7.3.2.2 Configuring the data output

### Overview

Name	Configuring the data output
Index	176
Data type (input)	STRUCTURE
Data type (output)	STRUCTURE

# Description

Used to configure a data output channel. This configuration is not permanent, i.e. the previously saved configuration will be active again after restarting the device.

An entry is created in the message history when calling up this method.

To activate data output on request and simultaneously deactivate continuous data output, you must activate a channel and enter 0.0.0.0 as the IPv4 address of the receiver and port 0.

For devices with a max. protective field range of 9.0 m, the transmitted data quantity can be very large (> 230 kByte/s) if all measured values are transmitted. For stable data output, you can adapt the transmission frequency (e.g. every second measurement) or decrease the angular range.

### Input parameters

Table 73: Configuring the data output: Input parameters

Data field	Data type	Length in bytes	Offset in bytes	Description
u8ChannelNumber	USINT	1	0	Number of the channel to be configured (0 $\dots$ 3).
Reserved		3	1	
oEnabled	BOOL	1	4	0: Deactivate channel. 1: Activate channel.
eInterfaceType	ENUM8	1	5	<ul> <li>The network interface via which the data output takes place:</li> <li>0: EFI-pro</li> <li>1: Ethernet/IP</li> <li>3: PROFINET</li> <li>4: Non-secure Ethernet</li> </ul>
Reserved		2	6	
tReceiverAddress	4 × BYTE	4	8	IP address of the system to which the measure- ment data is sent via UDP (Little Endian).
u16PortNumber	UINT	2	12	UDP port of the system to which the measure- ment data is sent via UDP. Valid port numbers: 0 and the range 2 65534.
u16PublishingFreq	UINT	2	14	Frequency with which the measurement data is output as a fraction of the scanning frequency. 1 means that each scan is output. 2 means that every second scan is output.
r10_22AngleStart	DINT	4	16	Angle at which the measurement data output should begin. The angle is saved in degrees (not radians) with a resolution of $1/4194304^{\circ}$ in the range of $-47.5^{\circ}$ to $227.5^{\circ}$ . If i16AngleStart = 0 and i16AngleStop = 0, then all measurement data is output.

Data field	Data type	Length in bytes	Offset in bytes	Description
r10_22AngleStop	DINT	4	20	Angle at which the measurement data output should end. The angle is saved in degrees (not radians) with a resolution of $1/4194304^{\circ}$ in the range of $-47.5^{\circ}$ to $227.5^{\circ}$ . If i16AngleStart = 0 and i16AngleStop = 0, then all measurement data is output.
tFeatures	CONT	2	24	<ul> <li>Data blocks that should be contained in the data output:</li> <li>Bit 0: Device status</li> <li>Bit 1: Configuration of the data output</li> <li>Bit 2: Measurement data</li> <li>Bit 3: Field interruption</li> <li>Bit 4: Application data</li> <li>Bit 5: Local inputs and outputs</li> <li>Bit 6 Bit 15: Reserved</li> </ul>
Reserved		2	26	

# **Output values**

# Table 74: Configuring the data output: Output values

Data field	Data type	Length in bytes	Offset in bytes	Description
eResult	ENUM8	1	0	<ul> <li>O: The configuration of the channel has been successfully activated. For all other values, the previously present configuration has not been changed.</li> <li>1: The channel configuration could not be activated. An general error has occurred.</li> <li>2: The channel configuration could not be activated. The supported number of channels has already been exhausted.</li> <li>3: The channel configuration could not be activated. The device used does not support the specified interface.</li> <li>4: The channel configuration could not be activated. The device used does not support the start angle specified.</li> <li>5: The channel configuration could not be activated. The device used does not support the start angle specified.</li> <li>6: The channel configuration could not be activated. All reserved bits must be set to 0.</li> </ul>
Reserved		3	1	

# Communication example

Table 75: Configuring the data output: Method invocation

CoLa2 telegram (HEX)											ISO 8859-15						
02	02	02	02	00	00	00	28	00	00	f1	7f	41	03	00	03		(A
4d	49	b0	00	00	00	00	00	01	00	00	00	32	00	a8	с0		MI2
50	c3	28	00	00	00	80	fd	00	00	80	02	00	00	00	00		P.(

Table 76: Configuring the data output: Sensor response (example)

CoLa2 telegram (HEX)										ISO 8859-15							
02	02	02	02	00	00	00	10	00	00	f1	7f	41	03	00	03		A
41	49	b0	00	00	00	00	00										AI

# 7.4 Appendix D: Examples of communication via CoLa2

## 7.4.1 Example 1: Activating continuous data output via UDP

This chapter describes how the connection to the device is established via the network (TCP/IP) and the <code>NavData_ChangeCommSettings</code> method is called up to activate continuous data output via UDP.

It is strongly recommended to familiarize yourself with CoLa2 communication in advance, see "Appendix B: Communication via CoLa2", page 34.

- 1. Open TCP session to the sensor, port 2122.
- Open CoLa2 session. To do so, send a CoLa2 telegram to establish a session (Cmd = "O", Mode = "X")

```
--> 02020202 0000000d 00 00 0000000 0001 4f 58 le0000 (OX, Timeout=30sec)
```

The device confirms the command (Cmd = "O", Mode = "A") and assigns a session ID (SessionID).

```
<-- 02020202 0000000a 00 00 2d6c2733 0001 4f 41 (OA)
```

 Call up method NavData_ChangeCommSettings (Index = 0xB0) (Cmd = "M", Mode = "I").

Data output is activated and configured with the transmitted parameters (**high-lighted in bold** in the example).

--> 02020202 00000028 00 00 2d6c2733 0003 4d 49

Table 77: Parameters	transmitted in	the example
----------------------	----------------	-------------

Value (hexadecimal)	Field	Value (decoded)	Meaning
00	u8ChannelNumber	0	Channel O should be configured.
000000	Reserved		
01	oEnabled	True	Activate channel.
00	eInterfaceType	0	The data is output via a the EFI-pro net- work interface.
0000	Reserved		
32	tReceiverAddress	50	The measurement
00		0	data is sent to IP
a8		168	192.168.0.50.
c0		192	
50c3	u16PortNumber	50000	The data is sent to UPD port 50,000.
2800	u16PublishingFreq	40	The measurement data is output with a frequency of 1/40, meaning every 40th scan is output.

Value (hexadecimal)	Field	Value (decoded)	Meaning
000080fd	r10_22AngleStart	-41943040	The measurement data output should begin at angle (- 41943040/419430 4)° = -10°.
00008002	r10_22AngleStop	41943040	The measurement data output should end at angle (41943040/419430) $4)^{\circ} = 10^{\circ}$ .
3£00	tFeatures	Bits 0 5 are 1.	The device status, configuration of data output, measure- ment data, object detection, applica- tion data, local inputs and outputs data blocks should be contained in the data output.
0000	Reserved		

The device confirms the method call-up (Cmd = "A", Mode = "I"). <-- 02020202 00000010 00 00 2d6c2733 0003 41 49 b0000000000 (AI)

- 4. Close CoLa2 session (Cmd = "C", Mode = "X").
  - --> 02020202 0000000a 00 00 2d6c2733 0005 43 58 (CX)
- ✓ The device confirms the command (Cmd = "C", Mode = "A").
  <-- 02020202 000000a 00 00 2d6c2733 0005 43 41 (CA)</p>
- 5. Close the TCP session.

In the example, the CoLa2 and the TCP sessions are closed after activating data output. Otherwise the device would close the TCP session after a timeout of 30 seconds. Data output via UDP is independent from a CoLa2 session and also continues to run after the end of a session. For configuration changes or to end data output, a new CoLa2 session can be established.

# 7.4.2 Example 2: Activating data output on request

 $\checkmark$ 

The measurement data can only be called up when data output is activated. You can activate data output in Safety Designer or call up the NavData_ChangeCommSettings method as in example 1. If you enter 0.0.0.0 as the IPv4 address of the receiver and port 0, the UDP output is suppressed. However, the data is available to be called up via the channel.

Transmit the following parameters via the method NavData_ChangeCommSettings to activate the send mode "on request":

oEnabled	TRUE
eInterfaceType	(Device-specific interface)
tReceiverAddress	0.0.0
u16PortNumber	0
ul6PublishingFreq	1
r10_22AngleStart	(can be selected by the customer)
r10_22AngleStop	(can be selected by the customer)
tFeatures	(can be selected by the customer)

# NOTE

i

If the data output of a deactivated channel is called up, the data received is invalid.

You can obtain the most recent data output instance from the variable <code>NavData_tLat-estTelegram</code> (Index = 179/0xB3 bis 182/0xB6, depending on channel) via CoLa2, see "Most recent measurement data", page 59.

With the following steps you can open a CoLa2 session and read the most recent telegram on channel 0. Channel 0 must be activated.

- 1. Open TCP session to the sensor, port 2122.
- Open CoLa2 session. To do so, send a CoLa2 telegram to establish a session (Cmd = "0", Mode = "X").

```
--> 02020202 0000000d 00 00 00000000 0001 4f 58 1e0000 (OX, Timeout=30sec)
```

The device confirms the command (Cmd = "O", Mode = "A") and assigns a session ID (SessionID).

```
<-- 02020202 0000000a 00 00 a09e8aab 0001 4f 41 (OA)
```

3. Read the variable NavData_tLatestTelegram for channel 0 (Index = 179/0xB3) (Cmd = "R", Mode = "I").

```
--> 02020202 0000000c 00 00 a09e8aab 0003 52 49 b300 (RI)
```

The device confirms the command (Cmd = "R", Mode = "A") and supplies the contents of the variable.

<-- 02020202 000002f0 00 00 a09e8aab 0003 52 41 b300520200006db50a018c8f0a0100000003b0100004e0 [...] (RA)

4. Repeat step 3. as many times as necessary to call up the data output multiple times. The device closes the TCP session after 30 seconds without activity.

```
5. Close CoLa2 session (Cmd = "C", Mode = "X").
```

```
--> 02020202 0000000a 00 00 a09e8aab 0004 43 58 (CX)
```

```
✓ The device confirms the command (Cmd = "C", Mode = "A").
```

<-- 02020202 0000000a 00 00 a09e8aab 0004 43 41 (CA)

6. Close the TCP session.

# 8 List of figures

Light pulses scan an area	7
Data output	. 10
Cut-off paths in Safety Designer	.13
UDP datagram and measurement data	.14
Example datagrams	.15
Laser beams	. 16
Rounding to the 8th laser beam	.17
Cola2 protocol stack	.18
Header of the layer 7.1, message layer	. 35
Layer 7.2, command layer	35
Setup of a session with a SICK sensor (server)	37
Expiration of a session	. 38
	Light pulses scan an area Data output Cut-off paths in Safety Designer UDP datagram and measurement data Example datagrams Laser beams Rounding to the 8th laser beam Cola2 protocol stack Header of the layer 7.1, message layer Layer 7.2, command layer Setup of a session with a SICK sensor (server) Expiration of a session

# 9 List of tables

1.	Data output datagram headers	15
2.	Example: UDP datagram	16
3.	microScan3, outdoorScan3 data sheet	19
4.	nanoScan3 data sheet	20
5.	Data output: Header	.22
6.	Data output: Block Device status	23
7.	Content of the block Device status	.24
8.	Data output: Block Configuration of the data output	25
9.	Data output: Block Measurement data	.26
10.	Data output: Block Field interruption	27
11.	Data output: Block Application data (inputs)	.27
12.	Data output: Block Application data (outputs)	29
13.	Data output: Block Local inputs and outputs (inputs)	31
14.	Data output: Block Local inputs and outputs (outputs)	.33
15.	Header of the layer 7.1, message layer	35
16.	Layer 7.2, command layer	.36
17.	Read variables	38
18.	Sensor response	38
19.	Write variable	38
20.	Sensor response	39
21.	Calling up methods	.39
22.	Sensor response	39
23.	Fault numbers	.39
24.	CoLa2 data types	.40
25.	Serial number: Variable recall	.42
26.	Serial number: Sensor response (example).	42
27.	Firmware version: Variable recall	.43
28.	Firmware version: Sensor response (example)	.43
29.	Type code: Variable recall	.43
30.	Type code: Sensor response (example)	.43
31.	Part number: Variable recall	44
32.	Part number: Sensor response (example).	44
33.	Device name: Variable recall	44
34.	Device name: Sensor response (example)	44
35.	Proiect name: Variable recall	45
36.	Project name: Sensor response (example)	45
37.	Application name: Structure	45
38.	Application name: Variable recall	45
39.	Application name: Sensor response (example)	46
40.	User name: Structure	46
41.	User name: Variable recall	46
42.	User name: Sensor response (example)	46
43.	Meta data of the configuration: Structure	.47
44.	Meta data of the configuration: Variable recall	48
45.	Meta data of the configuration: Sensor response (example)	48
46.	Sensor response (example), decoded	.48
47.	Status overview: Structure	49
48.	Status overview: Variable recall	50
49	Status overview: Sensor response (example)	50
50	Sensor response (example), decoded	51
51	SOPAS device status: Values	51
52	SOPAS device status: Variable recall	.51
53	SOPAS device status: Sensor response (example)	.52
54	Note on troubleshooting: Values	52
<b>-</b>		

55.	Note on troubleshooting: Variable recall	52
56.	Note on troubleshooting: Sensor response (example)	.52
57.	Device temperature: Structure	53
58.	Device temperature: Variable recall	. 53
59.	Device temperature: Sensor response (example)	. 53
60.	Device time: Structure	54
61.	Device time: Variable recall	54
62.	Device time: Sensor response (example)	55
63.	Saved configuration of the data output channel: Structure	. 55
64.	Saved configuration of the data output channel: Variable recall	. 56
65.	Saved configuration of the data output channel: Sensor response (example)	. 57
66.	Active configuration of the data output channel: Structure	57
67.	Active configuration of the data output channel: Variable recall	58
68.	Active configuration of the data output channel: Sensor response (example)	59
69.	Most recent measurement data: Variable recall	. 59
70.	Most recent measurement data: Sensor response (example)	. 60
71.	Identifying device: Method invocation	60
72.	Identifying device: Sensor response (example)	.60
73.	Configuring the data output: Input parameters	61
74.	Configuring the data output: Output values	62
75.	Configuring the data output: Method invocation	.62
76.	Configuring the data output: Sensor response (example)	.63
77.	Parameters transmitted in the example	. 63

Australia Phone +61 (3) 9457 0600 1800 33 48 02 - tollfree

E-Mail sales@sick.com.au Austria Phone +43 (0) 2236 62288-0 E-Mail office@sick.at

Belgium/Luxembourg Phone +32 (0) 2 466 55 66 E-Mail info@sick.be

Brazil Phone +55 11 3215-4900 E-Mail comercial@sick.com.br

Canada Phone +1 905.771.1444 E-Mail cs.canada@sick.com

Czech Republic Phone +420 234 719 500 E-Mail sick@sick.cz

Chile Phone +56 (2) 2274 7430 E-Mail chile@sick.com

China Phone +86 20 2882 3600 E-Mail info.china@sick.net.cn

Denmark Phone +45 45 82 64 00 E-Mail sick@sick.dk

Finland Phone +358-9-25 15 800 E-Mail sick@sick.fi

France Phone +33 1 64 62 35 00 E-Mail info@sick.fr

Germany Phone +49 (0) 2 11 53 010 E-Mail info@sick.de

Greece Phone +30 210 6825100 E-Mail office@sick.com.gr

Hong Kong Phone +852 2153 6300 E-Mail ghk@sick.com.hk

Detailed addresses and further locations at www.sick.com

Hungary

Phone +36 1 371 2680 E-Mail ertekesites@sick.hu

India Phone +91-22-6119 8900 E-Mail info@sick-india.com

Israel Phone +972 97110 11 E-Mail info@sick-sensors.com

Italy Phone +39 02 27 43 41

E-Mail info@sick.it Japan

Phone +81 3 5309 2112 E-Mail support@sick.jp

Malaysia Phone +603-8080 7425 E-Mail enquiry.my@sick.com

Mexico Phone +52 (472) 748 9451 E-Mail mexico@sick.com

Netherlands Phone +31 (0) 30 229 25 44 E-Mail info@sick.nl

New Zealand Phone +64 9 415 0459 0800 222 278 - tollfree E-Mail sales@sick.co.nz

Norway Phone +47 67 81 50 00 E-Mail sick@sick.no

Poland Phone +48 22 539 41 00 E-Mail info@sick.pl

Romania Phone +40 356-17 11 20 E-Mail office@sick.ro

Russia Phone +7 495 283 09 90 E-Mail info@sick.ru

Singapore Phone +65 6744 3732 E-Mail sales.gsg@sick.com Slovakia Phone +421 482 901 201 E-Mail mail@sick-sk.sk

Slovenia Phone +386 591 78849 E-Mail office@sick.si

South Africa Phone +27 10 060 0550 E-Mail info@sickautomation.co.za

South Korea Phone +82 2 786 6321/4 E-Mail infokorea@sick.com

Spain Phone +34 93 480 31 00 E-Mail info@sick.es

Sweden Phone +46 10 110 10 00 E-Mail info@sick.se

Switzerland Phone +41 41 619 29 39 E-Mail contact@sick.ch

Taiwan Phone +886-2-2375-6288 E-Mail sales@sick.com.tw

Thailand Phone +66 2 645 0009 E-Mail marcom.th@sick.com

**Turkey** Phone +90 (216) 528 50 00 E-Mail info@sick.com.tr

United Arab Emirates Phone +971 (0) 4 88 65 878 E-Mail contact@sick.ae

United Kingdom Phone +44 (0)17278 31121 E-Mail info@sick.co.uk

USA Phone +1 800.325.7425 E-Mail info@sick.com

Vietnam Phone +65 6744 3732 E-Mail sales.gsg@sick.com



